Skip to main content
Log in

Response of microbial community composition in soils affected by coal mine exploitation

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Surface mining activities, despite their benefits, lead to the deterioration of local and regional environmental quality and play a role in global ecosystem pollution. This research aimed to estimate the culturable microbial population structure at five locations near the opencast coal mine “Kakanj” (Bosnia and Herzegovina) via agar plate and phospholipid fatty acids (PLFA) method and to establish its relationship to the physical and chemical properties of soil. Using the ICP-OES method, the heavy metal pollution of all examined locations (overburden, former grass yard, forest, arable soil, and greenhouse) was observed. Substantial variations among the sites regarding the most expressed indicators of heavy metal pollution were noted; Cr, Pb, Ni, and Cu content ranged from 63.17 to 524.47, 20.57 to 349.47, 139.13 to 2785.67, and 25.97 to 458.73 mg/kg, respectively. In the overburden sample, considerable low microbial activity was detected; the bacterial count was approximately 6- to 18-fold lower in comparison with the other samples. PLFA analysis showed the reduction of microbial diversity, reflected through the prevalence of normal and branched saturated fatty acids, their ratio (ranged from 0.92 to 7.13), and the absence of fungal marker 18:2ω6 fatty acid. The principal component analysis showed a strong negative impact of heavy metals Na and B on main microbial and PLFA profiles. In contrast, stock of main chemical parameters, including Ca, K, Fe, and pH, was positively correlated with the microbial community structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adamczyk, B., Kitunen, V., & Smolander, A. (2008). Protein precipitation by tannins in soil organic horizon and vegetation in relation to tree species. Biology and Fertility of Soils, 45, 55–64. https://doi.org/10.1007/s00374-008-0308-0.

    Article  CAS  Google Scholar 

  • Antizar-Ladislao, B., Spanova, K., Beck, A. J., & Russell, N. J. (2008). Microbial community structure changes during bioremediation of PAHs in an aged coal-tar contaminated soil by in-vessel composting. International Biodeterioration and Biodegradation, 61, 357–364. https://doi.org/10.1016/j.ibiod.2007.10.002.

    Article  CAS  Google Scholar 

  • Arshi, A. (2017). Reclamation of coalmine overburden dump through environmental friendly method. Saudi Journal of Biological Sciences, 24, 371–378. https://doi.org/10.1016/j.sjbs.2015.09.009.

    Article  CAS  Google Scholar 

  • Azarbad, H., Niklinska, M., Van Gestel, C. A. M., Van Straalen, N. M., Röling, W. F. M., & Laskowski, R. (2013). Microbial community structure and functioning along metal pollution gradients. Environmental Toxicology and Chemistry, 32, 1992–2002. https://doi.org/10.1002/etc.2269.

    Article  CAS  Google Scholar 

  • Baldrian, P. (2008). Enzymes of saprotrophic basidiomycetes. In: L. Boddy, J. Frankland, J P. van West (Eds.), Ecology of saprotrophic basidiomycetes (pp. 19–41). Academic Press, New York.

    Chapter  Google Scholar 

  • Baldrian, P., Trogl, J., Frouz, J., Šnajdr, J., Valaškova, V., Merhautova, V., et al. (2008). Enzyme activities and microbial biomass in topsoil layer during spontaneous succession in spoil heaps after coal mining. Soil Biology and Biochemistry, 40, 2107–2115. https://doi.org/10.1016/j.soilbio.2008.02.019.

    Article  CAS  Google Scholar 

  • Basanta, R., de Varennes, A., & Díaz-Raviña, M. (2017). Microbial community structure and biomass of a mine soil with different organic and inorganic treatments and native plants. Journal of Soil Science and Plant Nutrition. https://doi.org/10.4067/S0718-95162017000400001.

  • Beyer, L., Wachendorf, C., Elsne, D. C., & Knabe, R. (1993). Suitability of dehydrogenase activity assay as an index of soil biological activity. Biology and Fertility of Soils, 16, 52–56. https://doi.org/10.1007/BF00336515.

    Article  CAS  Google Scholar 

  • Bhuyan, S. I., Tripathi, O. P., & Khan, M. L. (2014). Effect of season, soil and land use pattern on soil N mineralization, ammonification and nitrification: a study in Arunachal Pradesh, eastern Himalaya. International Journal of Environmental Sciences. https://doi.org/10.6088/ijes.2014050100008.

  • Billings, S. A., & Ziegler, S. E. (2008). Altered patterns of soil carbon substrate usage and heterotrophic respiration in a pine forest with elevated CO2 and N fertilization. Global Change Biology, 14, 1025–1036. https://doi.org/10.1111/j.1365-2486.2008.01562.x.

    Article  Google Scholar 

  • Blair, G. J., Lefroy, R. D. B., & Lisle, L. (1995). Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research, 46, 1459–1466.

    Article  Google Scholar 

  • Bowen, J. E., & Gauch, H. G. (1966). Nonessentiality of boron in fungi and the nature of its toxicity. Plant Physiology, 41, 319–324. https://doi.org/10.1104/pp.41.2.319.

    Article  CAS  Google Scholar 

  • Bremner, J. M. (1996). Nitrogen-total. In D. L. Sparks (Ed.), Methods of soil analysis part 3-chemical methods (pp. 1085–1121). Wisconsin: American Society of Agronomy. Medison.

    Google Scholar 

  • Burns, J. H., Anacker, B. L., Strauss, S. Y., & Burke, D. J. (2015). Soil microbial community variation correlates most strongly with plant species identity, followed by soil chemistry, spatial location and plant genus. AoB Plants, 7. https://doi.org/10.1093/aobpla/plv030.

  • Canadian Sediment Quality (2007). Guidelines for the protection of aquatic life. Canadian Council of Ministers of Environment.

    Google Scholar 

  • Casida Jr., L. E., Klein, D. A., & Santoro, T. (1964). Soil dehydrogenase activity. Soil Science, 98, 371–376. https://doi.org/10.1097/00010694-196412000-00004.

    Article  CAS  Google Scholar 

  • Chandra, A., Kumar, V., & Jain, M. K. (2015). The seasonal changes in soil properties due to coal mine impacts. Carpathian Journal of Earth and Environmental Sciences, 10, 241–248.

    Google Scholar 

  • Chodak, M., & Niklinska, M. (2010). Effect of texture and tree species on microbial properties of mine soils. Applied Soil Ecology, 46, 268–275. https://doi.org/10.1016/j.apsoil.2010.08.002.

    Article  Google Scholar 

  • Ciarkowska, K., Sołek-Podwika, K., & Wieczorek, J. (2014). Enzyme activity as an indicator of soil-rehabilitation processes at a zinc and lead ore mining and processing area. Journal of Environmental Management, 132, 250–256. https://doi.org/10.1016/j.jenvman.2013.10.022.

    Article  CAS  Google Scholar 

  • Claasens, S. (2007). Measuring rehabilitation success of coal mining disturbed areas: a spatial and temporal investigation into the use of soil microbial properties as assessment criteria. PhD thesis (pp. 1–112), North-West University, South Africa.

  • Claassens, S., Jansen van Rensburg, P. J., Maboeta, M. S., & van Rensburg, L. (2008). Soil microbial community function and structure in a post-mining chronosequence. Water, Air, and Soil Pollution. https://doi.org/10.1007/s11270-008-9719-7.

  • Clayton, H. G., Wick, A. F., & Daniels, W. L. (2009). Microbial biomass in reclaimed soils following coal mining in Virginia. In: R. I. Barnhisel (Ed.), Revitalizing the environment: proven solutions and innovative approaches (pp. 227–236). ASMR, Lexington, KY 40502.

  • Cookson, W. R., Abaye, D. A., Marschner, P., Murphy, D. V., Stockdale, E. A., & Goulding, K. W. T. (2005). The contribution of soil organic matter fractions to carbon and nitrogen mineralization and microbial community size and structure. Soil Biology and Biochemistry, 37, 1726–1737. https://doi.org/10.1016/j.soilbio.2005.02.007.

    Article  CAS  Google Scholar 

  • Corneo, P. E., Pellegrini, A., Cappellin, L., Roncador, M., Chierici, M., Gessler, C., & Pertot, I. (2013). Microbial community structure in vineyard soils across altitudinal gradients and in different seasons. FEMS Microbiology Ecology, 84, 588–602. https://doi.org/10.1111/1574-6941.12087.

    Article  CAS  Google Scholar 

  • Courtney, R., Harris, J. A., & Pawlett, M. (2014). Microbial community composition in a rehabilitated bauxite residue disposal area: a case study for improving microbial community composition. Restoration Ecology, 22, 798–805. https://doi.org/10.1111/rec.12143.

    Article  Google Scholar 

  • Dangi, S. R., Stahl, P. D., Wick, A. F., Ingram, L. J., & Buyer, J. S. (2012). Soil microbial community recovery in reclaimed soils on a surface coal mine site. Soil Science Society of America Journal, 76, 915–924. https://doi.org/10.2136/sssaj2011.0288.

    Article  CAS  Google Scholar 

  • de Boer, W., Folman, L. B., Summerbell, R. C., & Boddy, L. (2005). Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiology Reviews, 29, 795–811. https://doi.org/10.1016/j.femsre.2004.11.005.

    Article  CAS  Google Scholar 

  • Dutch Sediment Quality Standards (2000). Dutch Target and Intervention Values. Ministry of Housing, Spatial Planning and Environment. Directorate – General for Environmental Protection. The Netherlands.

  • Egner, H., Riehm, H., & Domingo, W. R. (1960). Untersuchungen uber die chemische bodenanalyse als grundlage fur die beurteilung des nahrstoffzustandes der Boden, II: Chemische extractionsmetoden zu phosphor und kaliumbestimmung. Kungliga Lantbrukshugskolans Annaler, 26, 199–215.

    CAS  Google Scholar 

  • Ehrenfeld, J. G., Ravit, B., & Elgersma, K. (2005). Feedback in the plant-soil system. Annual Review of Environment and Resources, 30, 75–115. https://doi.org/10.1146/annurev.energy.30.050504.144212.

    Article  Google Scholar 

  • Elhottova, D., Kristufek, V., Frouz, J., Novakova, A., & Chronakova, A. (2006). Screening for microbial markers in Miocene sediment exposed during open-cast brown coal mining. Antonie Van Leeuwenhoek, 89, 459–463. https://doi.org/10.1007/s10482-005-9044-8.

    Article  Google Scholar 

  • Filcheva, E., Noustorova, M., Gentcheva-Kostadinova, S. V., & Haigh, M. J. (2000). Organic accumulation and microbial action in surface coal-mine spoils, Pernik, Bulgaria. Ecological Engineering, 15, 1–15. https://doi.org/10.1016/S0925-8574(99)00008-7.

    Article  Google Scholar 

  • Finney, D. M., Buyer, J. S., & Kaye, J. P. (2017). Living cover crops have immediate impacts on soil microbial community structure and function. Journal of Soil and Water Conservation, 72, 361–373. https://doi.org/10.2489/jswc.72.4.361.

    Article  Google Scholar 

  • Frossard, A., Hammes, F., & Gessner, M. O. (2016). Flow cytometric assessment of bacterial abundance in soils, sediments and sludge. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.00903.

  • Frostegård, A., Tunlid, A., & Bååth, E. (2011). Use and misuse of PLFA measurements in soils. Soil Biology and Biochemistry, 43, 1621–1625. https://doi.org/10.1016/j.soilbio.2010.11.021.

    Article  CAS  Google Scholar 

  • Gough, H. L., Dahl, A. L., Nolan, M. A., Gaillard, J. F., & Stahl, D. A. (2008). Metal impacts on microbial biomass in the anoxic sediments of a contaminated lake. Journal of Geophysical Research, 113. https://doi.org/10.1029/2007JG000566.

  • Grayston, S. J., Campbell, C. D., Bardgett, R. D., Mawdsley, J. L., Clegg, C. D., Ritz, K., Griffiths, B. S., Rodwell, J. S., Edwards, S. J., Davies, W. J., Elston, D. J., & Millard, P. (2004). Assessing shifts in microbial community structure across a range of grasslands of differing management intensity using CLPP, PLFA and community DNA techniques. Applied Soil Ecology, 25, 63–84. https://doi.org/10.1016/S0929-1393(03)00098-2.

    Article  Google Scholar 

  • Hamidović, S. (2014). Microbiological activity of degraded soils at location of brown coal mine field and plant microbial interactions in ecoremediation processes. PhD thesis (pp. 1–133). University of Belgrade, Faculty of agriculture.

  • Hamidović, S., Teodorović, S., Lalević, B., Jovičić-Petrović, J., Jović, J., Kiković, D., et al. (2016). Bioremediation potential assessment of plant growth-promoting autochthonous bacteria: a lignite mine case study. Polish Journal of Environmental Studies, 25, 113–119. https://doi.org/10.15244/pjoes/59465.

    Article  CAS  Google Scholar 

  • Januszek, K., Błońska, E., Długa, J., & Socha, J. (2015). Dehydrogenase activity of forest soils depends on the assay used. International Agrophysics, 29, 47–59. https://doi.org/10.1515/intag-2015-0009.

    Article  CAS  Google Scholar 

  • Joly, F. X., Milcu, A., Scherer-Lorenzen, M., Jean, L. K., Bussotti, F., Dawud, S. M., et al. (2017). Tree species diversity affects decomposition through modified micro-environmental conditions across European forests. New Phytologist. https://doi.org/10.1111/nph.14452.

  • Jozefowska, A., Pietrzykowski, M., Wos, B., Cajthaml, T., & Frouz, J. (2017). The effects of tree species and substrate on carbon sequestration and chemical and biological properties in reforested post-mining soils. Geoderma, 292, 9–16. https://doi.org/10.1016/j.geoderma.2017.01.008.

    Article  CAS  Google Scholar 

  • Juwarkar, A. A. (2012). Microbe-assisted phytoremediation for restoration of biodiversity of degraded lands: a sustainable solution. Proceedings of the National Academy of Sciences, India – Section B: Biological Sciences. https://doi.org/10.1007/s40011-012-0098-x.

  • Kelly, J. J., Hagblom, M. M., & Tate, R. L. (2003). Effects of heavy metal contamination and remediation on soil microbial communities in the vicinity of a zinc smelter as indicated by analysis of microbial community phospholipid fatty acid profiles. Biology and Fertility of Soils, 38, 65–71. https://doi.org/10.1007/s00374-003-0642-1.

    Article  CAS  Google Scholar 

  • Khan, A. A., Zytner, R. G., & Feng, Z. (2015). Establishing correlations and scale-up factor for estimating the petroleum biodegradation rate in soil. Bioremediation Journal, 19, 32–46. https://doi.org/10.1080/10889868.2014.933173.

    Article  CAS  Google Scholar 

  • Kompala-Baba, A., Bierza, W., Blonska, A., Sierka, E., Magurno, F., Chmura, D., et al. (2019). Vegetation diversity on coal mine spoil heaps - how important is the texture of the soil substrate? Biologia. https://doi.org/10.2478/s11756-019-00218-x.

  • Kroppenstedt, R. M. (1985). Fatty acid and menaquinone analysis of actinomycetes and related organisms. In M. Goodfellow & D. E. Minnikin (Eds.), Chemical methods in bacterial systematics (pp. 173–199). London: Elsevier Science and Technology Books.

    Google Scholar 

  • Kumar, S., Chaudhury, S., & Maiti, S. K. (2013). Soil dehydrogenase enzyme activity in natural and mine soil - a review. Middle-East Journal of Scientific Research. https://doi.org/10.5829/idosi.mejsr.2013.13.7.2801.

  • Li, Y., Jia, Z., Sun, Q., Zhan, J., Yang, Y., & Wang, D. (2016). Ecological restoration alters microbial communities in mine tailings profiles. Scientific Reports, 6. https://doi.org/10.1038/srep25193.

  • Ma, Q., Qu, Y. Y., Zhang, X. W., Shen, W. L., Liu, Z. Y., Wang, J. W., Zhang, Z. J., & Zhou, J. T. (2015). Identification of the microbial community composition and structure of coal-mine wastewater treatment plants. Microbiological Research, 175, 1–5. https://doi.org/10.1016/j.micres.2014.12.013.

    Article  CAS  Google Scholar 

  • Maiti, S. K. (2013). Ecorestoration of the coalmine degraded lands. New Delhi: Springer.

    Book  Google Scholar 

  • Maiti, S. K., & Ghose, M. K. (2005). Ecological restoration of acidic coal mine overburden dumps- an Indian case study. Land Contamination and Reclamation, 13, 361–369. https://doi.org/10.2462/09670513.637.

    Article  Google Scholar 

  • Markowicz, A., Cycon, M., & Piotrowska-Seget, Z. (2016). Microbial community structure and diversity in long-term hydrocarbon and heavy metal contaminated soils. International Journal of Environmental Research. https://doi.org/10.22059/IJER.2016.57792.

  • Masto, R. E., Sheik, S., Nehru, G., Selvi, V. A., George, J., & Ram, L. C. (2015). Assessment of environmental soil quality around Sonepur Bazari mine of Raniganj coalfield, India. Solid Earth, 6, 811–821. https://doi.org/10.5194/se-6-811-2015.

    Article  Google Scholar 

  • Mastrogianni, A., Papatheodorou, E. M., Monokrousos, N., Menkissoglu-Spiroudi, U., & Stamou, G. P. (2014). Reclamation of lignite mine areas with Triticum aestivum: the dynamics of soil functions and microbial communities. Applied Soil Ecology, 80, 51–59. https://doi.org/10.1016/j.apsoil.2014.03.009.

    Article  Google Scholar 

  • McKinley, V. L., Peacock, A. D., & White, D. C. (2005). Microbial community PLFA and PHB responses to ecosystem restoration in tallgrass prairie soils. Soil Biology and Biochemistry, 37, 19461958. https://doi.org/10.1016/j.soilbio.2005.02.033.

    Article  CAS  Google Scholar 

  • Merino, C., Nannipieri, P., & Matus, F. (2015). Soil carbon controlled by plant, microorganism and mineralogy interactions. Journal of Soil Science and Plant Nutrition. https://doi.org/10.4067/S0718-95162015005000030.

  • Minnikin, D. E., Alshamaony, L., & Goodfellow, M. (1975). Differentiation of Mycobacterium, Nocardia, and related taxa by thin-layer chromatographic analysis of whole-organism Methanolysates. Journal of General Microbiology, 88, 200–204. https://doi.org/10.1099/00221287-88-1-200.

    Article  CAS  Google Scholar 

  • Monterroso, C., Alvarez, E., & Marcos, M. L. F. N. (1999). Evaluation of Mehlich 3 reagent as a multielement extractant in mine soils. Land Degradation and Development, 10, 35–47. https://doi.org/10.1002/(SICI)1099-145X(199901/02)10:13.0.CO;2-6.

    Article  Google Scholar 

  • Mukhopadhyay, S., Maiti, S. K., & Masto, R. E. (2014). Development of mine soil quality index (MSQI) for evaluation of reclamation success: a chronosequence study. Ecological Engineering, 71, 10–20. https://doi.org/10.1016/j.ecoleng.2014.07.001.

    Article  Google Scholar 

  • Mukhopadhyay, S., Masto, R. E., Yadav, A., George, J., Ram, L. C., & Shukla, S. P. (2016). Soil quality index for evaluation of reclaimed coal mine spoil. The Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2015.10.035.

  • Paradelo, R., & Barral, M. T. (2009). Effect of moisture and disaggregation on the microbial activity of soil. Soil and Tillage Research, 104, 317–319. https://doi.org/10.1016/j.still.2009.02.010.

    Article  Google Scholar 

  • Peacock, A. D., Macnaughton, S. J., Cantu, J. M., Dale, V. H., & White, D. C. (2001). Soil microbial biomass and community composition along an anthropogenic disturbance gradient within a long-leaf pine habitat. Ecological lndicators, 1, 113–121. https://doi.org/10.1016/S1470-160X(01)00013-9.

    Article  CAS  Google Scholar 

  • Peper, I. L., Gerba, C. P., & Brendencke, J. W. (1995). Environmental microbiology. San Diego: Academic Press.

    Google Scholar 

  • Poncelet, D. M., Cavender, N., Cutright, T. J., & Senko, J. M. (2014). An assessment of microbial communities associated with surface mining-disturbed overburden. Environmental Monitoring and Assessment, 186, 1917–1929. https://doi.org/10.1007/s10661-013-3505-8.

    Article  CAS  Google Scholar 

  • Ponder Jr., F., Tadros, M., & Loewenstein, E. F. (2009). Microbial properties and litter and soil nutrients after two prescribed fires in developing savannas in an upland Missouri Ozark Forest. Forest Ecology and Management, 257, 755–763. https://doi.org/10.1016/j.foreco.2008.10.009.

    Article  Google Scholar 

  • Rajapaksha, R. M. C. P., Tobor-Kaplon, M. A., & Bååth, E. (2004). Metal toxicity affects fungal and bacterial activities in soil differently. Applied and Environmental Microbiology, 70, 2966–2973. https://doi.org/10.1128/AEM.70.5.2966-2973.2004.

    Article  CAS  Google Scholar 

  • Rao, I. M., Miles, J. W., Beebe, S. E., & Horst, W. J. (2016). Root adaptations to soils with low fertility and aluminium toxicity. Annals of Botany, 118, 593–605. https://doi.org/10.1093/aob/mcw073.

    Article  CAS  Google Scholar 

  • Roesch, L. F. W., Fulthorpe, R. R., Riva, A., Casella, G., Hadwin, A. K. M., Kent, A. D., Daroub, S. H., Camargo, F. A. O., Farmerie, W. G., & Triplett, E. W. (2007). Pyrosequencing enumerates and contrasts soil microbial diversity. The ISME Journal, 1, 283–290. https://doi.org/10.1038/ismej.2007.53.

    Article  CAS  Google Scholar 

  • Rowell, D. (1994). Soil science; methods and application. Harlow, Essex: Longman Scientific and Technical.

    Google Scholar 

  • Rowell, D. L. (1997). Bodenkunde. Untersuchungsmethoden und ihre anwendungen. Berlin: Springer.

    Google Scholar 

  • Sahu, H. B., & Dash, S. (2011). Land degradation due to mining in India and its mitigation measures. Proceedings of the 2nd International Conference on Environmental Science and Technology, IPCBEE (vol.6). Singapore (pp. 1–5). IACSIT Press.

  • Salazar, S., Sanchez, L., Alvarez, J., Valverde, A., Galindo, P., Igual, J., et al. (2011). Correlation among soil enzyme activities under different forest system management practices. Ecological Engineering, 37, 1123–1131. https://doi.org/10.1016/j.ecoleng.2011.02.007.

    Article  Google Scholar 

  • Sheoran, V., Sheoran, A. S., & Poonia, P. (2010). Soil reclamation of abandoned mine land by revegetation: a review. Sediment and Water: International Journal of Soil https://scholarworks.umass.edu/intljssw/vol3/iss2/13.

    Google Scholar 

  • Singh, B., & Rengel, Z. (2007). The role of crop residues in improving soil fertility. In: P. Marschner, P., Z. Rengel (Eds), Nutrient cycling in terrestrial ecosystems (pp. 183–214). Springer-Verlag, Berlin.

  • Sipilä, T. P., Yrjälä, K., Alakukku, L., & Palojärvi, A. (2012). Cross-site soil microbial communities under tillage regimes: fungistasis and microbial biomarkers. Applied and Environmental Microbiology, 78, 8191–8201. https://doi.org/10.1128/AEM.02005-12.

    Article  CAS  Google Scholar 

  • Šnajdr, J., Dobiasova, P., Urbanova, M., Petrankova, M., Cajthaml, T., Frouz, J., et al. (2013). Dominant trees affect microbial community composition and activity in post-mining afforested soils. Soil Biology and Biochemistry, 56, 105–115. https://doi.org/10.1016/j.soilbio.2012.05.004.

    Article  CAS  Google Scholar 

  • Söderberg, K. H., Probanza, A., Jumpponen, A., & Bååth, E. (2004). The microbial community in the rhizosphere determined by community-level physiological profiles (CLPP) and direct soil–and cfu–PLFA techniques. Applied Soil Ecology, 25, 135–145. https://doi.org/10.1016/j.apsoil.2003.08.005.

    Article  Google Scholar 

  • Solek-Podwika, K., Ciarkowska, K., & Kaleta, D. (2016). Assessment of the risk of pollution by sulfur compounds and heavy metals in soils located in the proximity of a disused for 20 years sulfur mine (SE Poland). Journal of Environmental Management, 180, 450–458. https://doi.org/10.1016/j.jenvman.2016.05.074.

    Article  CAS  Google Scholar 

  • Shrestha, R. K., & Lal, R. (2011). Changes in physical and chemical properties of soil after surface mining and reclamation. Geoderma, 161, 168–176. https://doi.org/10.1016/j.geoderma.2010.12.015.

    Article  CAS  Google Scholar 

  • Trivedi, P., Delgado-Baquerizo, M., Anderson, I. C., & Singh, B. K. (2016). Response of soil properties and microbial communities to agriculture: implications for primary productivity and soil health indicators. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.00990.

  • Trögl, J., Pavlorkova, J., Packova, P., Sejak, J., Kuran, P., Popelka, J., et al. (2016). Indication of importance of including soil microbial characteristics into biotope valuation method. Sustainability. https://doi.org/10.3390/su8030253.

  • Upadhyay, N., Verma, S., Singh, A. P., Devi, S., Vishwakarma, K., Kumar, N., et al. (2016). Soil ecophysiological and microbiological indices of soil health: a study of coal mining site in Sonbhadra, Uttar Pradesh. Journal of Soil Science and Plant Nutrition, https://doi.org/10.4067/S0718-95162016005000056.

  • Urbanova, M., Kopecky, J., Valaškova, V., Sagova-Marečkova, M., Elhottova, D., Kyselkova, M., et al. (2011). Development of bacterial community during spontaneous succession on spoil heaps after brown coal mining. FEMS Microbiology Ecology, 78, 59–69. https://doi.org/10.1111/j.1574-6941.2011.01164.x.

    Article  CAS  Google Scholar 

  • USEPA 3051A. (2007). Microwave assisted acid digestion of sediments, sludges, soils, and oils. Washington, DC: U.S. Gov. Print. Office.

    Google Scholar 

  • Wang, J., Wang, H., Cao, Y., Bai, Z., & Qin, Q. (2012). Effects of soil and topographic factors on vegetation restoration in opencast coal mine dumps located in a loess area. Scientific Reports, 6. https://doi.org/10.1038/srep22058.

  • Willers, C., Jansen van Rensburg, P. J., & Claassens, S. (2015). Phospholipid fatty acid profiling of microbial communities–a review of interpretations and recent applications. Journal of Applied Microbiology, 119, 1207–1218. https://doi.org/10.1111/jam.12902.

    Article  CAS  Google Scholar 

  • Williamson, J. C., & Johnson, D. B. (1991). Microbiology of soils at opencast sites: II. Population transformations occurring following land restoration and the influence of rye grass/fertilizer amendments. European Journal of Soil Science, 42, 9–15. https://doi.org/10.1111/j.1365-2389.1991.tb00086.x.

    Article  Google Scholar 

  • Wolinska, A., Rekosz-Burlaga, H., Goryluk-Salmonowicz, A., Błaszczyk, M., & Stępniewska, Z. (2015). Bacterial abundance and dehydrogenase activity in selected agricultural soils from Lublin Region. Polish Journal of Environmental Studies, 24, 2677–2682. https://doi.org/10.15244/pjoes/59323.

    Article  CAS  Google Scholar 

  • Wolinska, A., Szafranek-Nakonieczna, A., Banach, A., Błaszczyk, M., & Stępniewska, Z. (2016). The impact of agricultural soil usage on activity and abundance of ammonifying bacteria in selected soils from Poland. Springerplus, 5, 565. https://doi.org/10.1186/s40064-016-2264-8.

    Article  CAS  Google Scholar 

  • Yao, R. J., Yang, J. S., Gao, P., Zhang, J. B., & Jin, W. H. (2013). Determining minimum data set for soil quality assessment of typical salt-affected farmland in the coastal reclamation area. Soil and Tillage Research, 128, 137–148. https://doi.org/10.1016/j.still.2012.11.007.

    Article  Google Scholar 

  • Yao, X. F., Zhang, J. M., Tian, L., & Guo, J. H. (2017). The effect of heavy metal contamination on the bacterial community structure at Jiaozhou Bay, China. Brazilian Journal of Microbiology, 48, 71–78. https://doi.org/10.1016/j.bjm.2016.09.007.

    Article  CAS  Google Scholar 

  • Zelles, L. (1999). Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biology and Fertility of Soils, 29, 111–129. https://doi.org/10.1007/s003740050533.

    Article  CAS  Google Scholar 

  • Zelles, L., Bai, Q. Y., Ma, R. X., Rackwitz, R., Winter, K., & Beese, F. (1994). Microbial biomass, metabolic activity and nutritional status determined from fatty acid patterns and poly-hydroxybutyrate in agriculturally-managed soils. Soil Biology and Biochemistry, 26, 439–446. https://doi.org/10.1016/0038-0717(94)90175-9.

    Article  CAS  Google Scholar 

  • Zhang, Z., Qu, Y., Li, S., Feng, K., Wang, S., Cai, W., Liang, Y., Li, H., Xu, M., Yin, H., & Deng, Y. (2017). Soil bacterial quantification approaches coupling with relative abundances reflecting the changes of taxa. Scientific Reports, 7, 4837. https://doi.org/10.1038/s41598-017-05260-w.

    Article  CAS  Google Scholar 

  • Zhang, P., Zheng, J., Pan, G., Zhang, X., Li, L., & Tippkotter, R. (2007). Changes in microbial community structure and function within particle size fractions of a paddy soil under different long-term fertilization treatments from the tai Lake region, China. Colloids and Surfaces B: Biointerfaces, 58, 264–270. https://doi.org/10.1016/j.colsurfb.2007.03.018.

    Article  CAS  Google Scholar 

  • Zhang, Y., Zheng, N., Wang, J., Yao, H., Qiu, Q., & Chapman, S. J. (2019). High turnover rate of free phospholipids in soil confirms the classic hypothesis of PLFA methodology. Soil Biology and Biochemistry. https://doi.org/10.1016/j.soilbio.2019.05.023.

  • Zhao, C., Long, J., Liao, H., Zheng, C., Li, J., Liu, L., et al. (2019). Dynamics of soil microbial communities following vegetation succession in a karst mountain ecosystem, Southwest China. Scientific Reports. https://doi.org/10.1038/s41598-018-36886-z.

  • Zhao, Z., Shahrour, I., Bai, Z., Fan, W., Feng, L., & Li, H. (2013). Soils development in opencast coal mine spoils reclaimed for 1-13 years in the West-Northern Loess Plateau of China. European Journal of Soil Biology, 55, 40–46. https://doi.org/10.1016/j.ejsobi.2012.08.006.

    Article  Google Scholar 

Download references

Funding

This research was partially supported by the Ministry of Education, Science and Technological development of the Republic of Serbia (grant numbers 451-03-68/2020-14/200116, 451-03-68/2020-14/200026 and 200051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blažo Lalević.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamidović, S., Cvijović, G.G., Waisi, H. et al. Response of microbial community composition in soils affected by coal mine exploitation. Environ Monit Assess 192, 364 (2020). https://doi.org/10.1007/s10661-020-08305-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08305-2

Keywords

Navigation