Skip to main content
Log in

Development of the delta-normal stress combining CE-QUAL-W2 as a novel method for spatio-temporal monitoring of water quality in Karkheh Dam Reservoir

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Continuous monitoring of water quality in dam reservoirs is a typically difficult and costly operation. In this study, the results of computer modeling with the CE-QUAL-W2 model were combined with data mining techniques to develop a new method called “delta-normal stress” for identifying the critical temporal and spatial monitoring ranges. For this purpose, long-term variations of three quality parameters including nitrite-nitrate level, dissolved oxygen (DO) level, and water temperature near the outlet of the dam, which is the point of interest for reservoir exploitation, were analyzed. Based on this analysis, the time intervals and depth ranges with the highest frequency of significant variations in terms of each parameter were identified. The results showed that given the difference between the delta-normal stress trend of temperature and that of other parameters in Karkheh Dam Reservoir, temperature can be monitored at much lower sampling resolutions and using cheaper methods and equipment without sacrificing accuracy. Based on the frequency of occurrence of delta-normal stress of more than 20% above the total average, the key sampling times and locations for nitrite-nitrate and DO levels were determined to be the periods of January–February, February–March, and March–April, and depths of 60, 55, 50, and 5 m, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arend, K. K., Beletsky, D., Depinto, J. V., Ludsin, S. A., Roberts, J. J., Rucinski, D. K., et al. (2011). Seasonal and interannual effects of hypoxia on fish habitat quality in central Lake Erie. Freshwater Biology, 56(2), 366–383.

    Article  Google Scholar 

  • Behmel, S., Damour, M., Ludwig, R., & Rodriguez, M. J. (2016). Water quality monitoring strategies—a review and future perspectives. Science of the Total Environment, 571, 1312–1329.

    Article  CAS  Google Scholar 

  • Bocaniov, S. A., Ullmann, C., Rinke, K., Lamb, K. G., & Boehrer, B. (2014). Internal waves and mixing in a stratified reservoir: insights from three-dimensional modeling. Limnologica, 49, 52–67.

    Article  Google Scholar 

  • Boehrer, B., Golmen, L., Løvik, J. E., Rahn, K., & Klaveness, D. (2013). Thermobaric stratification in very deep Norwegian freshwater lakes. Journal of Great Lakes Research, 39(4), 690–695.

    Article  Google Scholar 

  • Castendyk, D. N., Eary, L. E., & Balistrieri, L. S. (2015). Modeling and management of pit lake water chemistry 1: theory. Applied Geochemistry, 57, 267–288.

    Article  CAS  Google Scholar 

  • Chung, S. W., & Oh, J. K. (2006). Calibration of CE-QUAL-W2 for a monomictic reservoir in a monsoon climate area. Water Science and Technology, 54(11–12), 29–37.

    Article  CAS  Google Scholar 

  • Chuo, M., Ma, J., Liu, D., & Yang, Z. (2019). Effects of the impounding process during the flood season on algal blooms in Xiangxi Bay in the Three Gorges Reservoir, China. Ecological Modelling, 392, 236–249.

    Article  CAS  Google Scholar 

  • Cole, T.M., & Wells, S.A. (2009). CE-QUAL-W2: a two dimensional, laterally averaged hydrodynamic and water quality model. Version 3.6, user manual, Portland State University. US Army Engineer Research and Development Center.

  • Foley, B., Jones, I. D., Maberly, S. C., & Rippey, B. (2012). Long-term changes in oxygen depletion in a small temperate lake: effects of climate change and eutrophication. Freshwater Biology, 57(2), 278–289.

    Article  CAS  Google Scholar 

  • Friedrich, J., Janssen, F., Aleynik, D., Bange, H. W., Boltacheva, N., Çagatay, M. N., Dale, A. W., Etiope, G., Erdem, Z., Geraga, M., Gilli, A., Gomoiu, M. T., Hall, P. O. J., Hansson, D., He, Y., Holtappels, M., Kirf, M. K., Kononets, M., Konovalov, S., Lichtschlag, A., Livingstone, D. M., Marinaro, G., Mazlumyan, S., Naeher, S., North, R. P., Papatheodorou, G., Pfannkuche, O., Prien, R., Rehder, G., Schubert, C. J., Soltwedel, T., Sommer, S., Stahl, H., Stanev, E. V., Teaca, A., Tengberg, A., Waldmann, C., Wehrli, B., & Wenzhöfer, F. (2014). Investigating hypoxia in aquatic environments: diverse approaches to addressing a complex phenomenon. Biogeosciences, 11, 1215–1259.

    Article  Google Scholar 

  • He, W., Lian, J., Zhang, J., Yu, X., & Chen, S. (2019). Impact of intra-annual runoff uniformity and global warming on the thermal regime of a large reservoir. Science of the Total Environment, 658, 1085–1097.

    Article  CAS  Google Scholar 

  • Hupfer, M., & Lewandowski, J. (2008). Oxygen controls the phosphorus release from lake sediments–a long-lasting paradigm in limnology. International Review of Hydrobiology, 93(4–5), 415–432.

    Article  CAS  Google Scholar 

  • Imboden, D.M., & Wüest, A. (1995). Mixing mechanisms in lakes. Physics and chemistry of lakes. Springer, 83–138.

  • Lee, K., Matsuno, T., Endoh, T., Ishizaka, J., Zhu, Y., Takeda, S., & Sukigara, C. (2017). A role of vertical mixing on nutrient supply into the subsurface chlorophyll maximum in the shelf region of the East China Sea. Continental Shelf Research, 143, 139–150.

    Article  Google Scholar 

  • Maymandi, N., Kerachian, R., & Nikoo, M. R. (2018). Optimal spatio-temporal design of water quality monitoring networks for reservoirs: application of the concept of value of information. Journal of Hydrology, 558, 328–340.

    Article  Google Scholar 

  • Memarzadeh, M., Mahjouri, N., & Kerachian, R. (2013). Evaluating sampling locations in river water quality monitoring networks: application of dynamic factor analysis and discrete entropy theory. Environmental Earth Sciences, 70(6), 2577–2585.

    Article  Google Scholar 

  • Müller, B., Bryant, L. D., Matzinger, A., & Wüest, A. (2012). Hypolimnetic oxygen depletion in eutrophic lakes. Environmental Science and Technology, 46(18), 9964–9971.

    Google Scholar 

  • Nikoo, M. R., Pourshahabi, S., Rezazadeh, N., & Shafiee, M. E. (2017). Stakeholder engagement in multi-objective optimization of water quality monitoring network, case study: Karkheh Dam Reservoir. Water Science and Technology: Water Supply, 17(4), 966–974.

    CAS  Google Scholar 

  • Noori, R., Yeh, H. D., Ashrafi, K., Rezazadeh, N., Bateni, S. M., Karbassi, A., Kachoosangi, F. T., & Moazami, S. (2015). A reduced-order based CE-QUAL-W2 model for simulation of nitrate concentration in dam reservoirs. Journal of Hydrology, 530, 645–656.

    Article  CAS  Google Scholar 

  • Noori, R., Asadi, N., & Deng, Z. (2018a). A simple model for simulation of reservoir stratification. Journal of Hydraulic Research, 1–12.

  • Noori, R., Berndtsson, R., Adamowski, J. F., & Abyaneh, M. R. (2018b). Temporal and depth variation of water quality due to thermal stratification in Karkheh Reservoir, Iran. Journal of Hydrology: Regional Study, 19, 279–286.

    Google Scholar 

  • Olea, R., & Davis, J. (1999). Sampling analysis and mapping of water levels in the high plains aquifer of Kansas. KGS Open File Rep, 11, 1999.

    Google Scholar 

  • Park, S. Y., Choi, J. H., Wang, S., & Park, S. S. (2006). Design of a water quality monitoring network in a large river system using the genetic algorithm. Ecological Modelling, 199(3), 289–297.

    Article  Google Scholar 

  • Rahman, A. K. M., Al Bakri, D., Ford, P., & Church, T. (2005). Limnological characteristics, eutrophication and cyanobacterial blooms in an inland reservoir, Australia. Lakes & Reservoirs: Research and Management, 10(4), 211–220.

    Article  CAS  Google Scholar 

  • Rezazadeh, N. (2012). Management of eutrophication and selecting appropriate discharge level of Karkheh Dam Reservoir with mathematics model (master dissertation). University of Tehran, Tehran.

  • Sadeghian, A., Chapra, S.C., & Hudson, J. (2018). Wheater H, Lindenschmidt K-E. Improving in-lake water quality modeling using variable chlorophyll a/algal biomass ratios. Environmental Modelling and Software, 101, 73–85.

  • Shi, B., Jiang, J., Sivakumar, B., Zheng, Y., & Wang, P. (2018). Quantitative design of emergency monitoring network for river chemical spills based on discrete entropy theory. Water Research, 134, 140–152.

    Article  CAS  Google Scholar 

  • Sullivan, A.B., & Rounds, S.A. (2004). Modeling hydrodynamics, temperature and water quality in Henry Hagg Lake, Oregon, 2000-2003.

  • Telci, I. T., Nam, K., Guan, J., & Aral, M. M. (2009). Optimal water quality monitoring network design for river systems. Journal of Environmental Management, 90(10), 2987–2998.

    Article  Google Scholar 

  • Terry, J. A., Sadeghian, A., Baulch, H. M., Chapra, S. C., & Lindenschmidt, K. E. (2018). Challenges of modelling water quality in a shallow prairie lake with seasonal ice cover. Ecological Modelling, 384, 43–52.

    Article  CAS  Google Scholar 

  • Theodossiou, N., & Latinopoulos, P. (2006). Evaluation and optimisation of groundwater observation networks using the Kriging methodology. Environmental Modelling and Software, 21(7), 991–1000.

    Article  Google Scholar 

  • Tuo, Y., Deng, Y., Li, J., Li, N., Li, K., Wei, L., & Zhao, Z. (2018). Effects of dam reconstruction on thermal-ice regime of Fengman Reservoir. Cold Regions Science and Technology, 146, 223–235.

    Article  Google Scholar 

  • Vaquer-Sunyer, R., & Duarte, C. M. (2008). Thresholds of hypoxia for marine biodiversity. Proceedings of the National Academy of Sciences, 105(40), 15452–15457.

    Article  CAS  Google Scholar 

  • Wang, Y., Xia, H., Fu, J., & Sheng, G. (2004). Water quality change in reservoirs of Shenzhen, China: detection using LANDSAT/TM data. Science of the Total Environment, 328(1–3), 195–206.

    Article  CAS  Google Scholar 

  • Williams, N.T. (2007). Modeling dissolved oxygen in Lake Powell using CE-QUAL-W2.

  • Willmott, C. J., & Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research, 30(1), 79–82.

    Article  Google Scholar 

  • Wu, R. S., Liu, W. C., & Hsieh, W. H. (2004). Eutrophication modeling in Shihmen Reservoir, Taiwan. Journal of Environmental Science and Health, Part A, 39(6), 1455–1477.

    Article  Google Scholar 

  • Yenilmez, F., Düzgün, S., & Aksoy, A. (2015). An evaluation of potential sampling locations in a reservoir with emphasis on conserved spatial correlation structure. Environmental Monitoring and Assessment, 187(1), 4216.

    Article  Google Scholar 

  • Yoshimizu, C., Yoshiyama, K., Tayasu, I., Koitabashi, T., & Nagata, T. (2010). Vulnerability of a large monomictic lake (Lake Biwa) to warm winter event. Limnology, 11(3), 233–239.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Karrabi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

Continuous monitoring of water quality in dam reservoirs

Development of a novel method for spatio-temporal monitoring of water quality

Combining the CE-QUAL-W2 model with delta-normal stress

Variations of nitrite-nitrate level, dissolved oxygen level, and water temperature

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

YoosefDoost, A., Karrabi, M., Rezazadeh, N. et al. Development of the delta-normal stress combining CE-QUAL-W2 as a novel method for spatio-temporal monitoring of water quality in Karkheh Dam Reservoir. Environ Monit Assess 192, 312 (2020). https://doi.org/10.1007/s10661-020-08295-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08295-1

Keywords

Navigation