Skip to main content

Advertisement

Log in

Age-related physicochemical differences in ZnO nanoparticles in the seawater and their bacterial interaction

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

To assess the fate and behavior of engineered nanoparticles in the environment, it is important to examine the physicochemical and toxicological transformation of nanoparticles as they age in seawater. In this study, we investigated how aging and seawater conditions altered the physiochemical structure of nanoparticles and affected their interactions with bacteria. For this purpose, zinc oxide nanoparticles were aged under different seawater conditions by keeping them in 1%, 10%, and 100% seawater for 1 day and 20 days. The main physicochemical parameters (surface chemistry, chemical composition, particle size, and zeta potential) and toxicity of aged nanoparticles towards gram-negative Pseudomonas aeruginosa and gram-positive Staphylococcus aureus were examined. The results indicated that aged zinc oxide nanoparticles in various concentrations of seawater changed their surface chemistry, chemical composition, particle size, and zeta potentials. Growth inhibition results were observed in that the inhibition of gram-negative (Pseudomonas aeruginosa) bacteria was higher compared with the gram-positive (Staphylococcus aureus) bacteria, and Staphylococcus aureus activated with the aged zinc oxide nanoparticles. Also, the results showed that the key biochemical factors affected by the aging and seawater concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Apak, R., Guclu, K., Ozyurek, M., & Karademir, S. E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Joırnal of Agricultural Food Chemistry, 52, 7970–7981.

    CAS  Google Scholar 

  • Arora, A., Jain, J., Rajwade, J. M., & Paknikar, K. M. (2008). Cellular responses induced by silver nanoparticles: in vitro studies. Toxicology Letters, 179, 93–100.

    CAS  Google Scholar 

  • Baek, Y. W., & An, Y. J. (2011). Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Science of the Total Environment, 409(8), 1603–1608.

    CAS  Google Scholar 

  • Baysal, A., & Saygin, H. (2019). Physico-chemical and toxicologıcal behaviour of Al2O3 nanoparticles in fine particulate matter. Environmental Engineering and Management Journal., 18(12), 2683–2694.

    Google Scholar 

  • Baysal, A., Saygin, H., & Ustabasi, G. S. (2018a). Interaction of PM2.5 airborne particulates with ZnO and TiO2 nanoparticles and their effect on bacteria. Environmental Monitoring and Assessment, 190(1), 34–49.

    Google Scholar 

  • Baysal, A., Saygin, H., & Ustabasi, G. S. (2018b). Influence of environmental media on carbon nanotubes and graphene nanoplatelets towards bacterial toxicity. Archives of Environmental Protection, 44(3), 85–98.

    CAS  Google Scholar 

  • Baysal, A., Saygin, H., & Ustabasi, G. S. (2019). Physicochemical transformation of ZnO and TiO2 nanoparticles in sea water and its impact on bacterial toxicity. Environmental Health and Engineering Management, 6(1), 73–80.

    CAS  Google Scholar 

  • Baysal, A., Saygin, H., & Ustabasi, G. S. (2020). An insight into the dependency on sample preparation for (eco) toxicity assessment of TiO2 nanoparticles. Environmental Monitoring and Assessment, 192(2), 1–14.

    Google Scholar 

  • Cupi, D., Hartmann, N. B., & Baun, A. (2015). The influence of natural organic matter and aging on suspension stability in guideline toxicity testing of silver, zinc oxide, and titanium dioxide nanoparticles with Daphnia magna. Environmental Toxicology and Chemistry, 34(3), 497–506.

    CAS  Google Scholar 

  • D'Agata, A., Fasulo, S., Dallas, L. J., Fisher, A. S., Maisano, M., Readman, J. W., & Jha, A. N. (2014). Enhanced toxicity of 'bulk' titanium dioxide compared to 'fresh' and “aged” nano-TiO2 in marine mussels (Mytilus galloprovincialis). Nanotoxicology, 8(5), 549–558.

    CAS  Google Scholar 

  • Djurisic, A. B., Leung, Y. H., Ng, A. M. C., Xu, X. Y., Lee, P. H., Degger, N., & Wu, R. S. S. (2015). Toxicity of metal oxide nanoparticles: Mechanisms, Characterization, and Avoiding Experimental Artifacts. Small, 11(1), 26–44.

  • Dong, H., Zhao, F., Zeng, G., Tang, L., Fan, C., Zhang, L., Zeng, Y., He, Q., Xie, Y., & Wu, Y. (2016). Aging study on carboxymethyl cellulose-coated zero-valent iron nanoparticles in water: chemical transformation and structural evolution. Journal of Hazardous Materials, 312, 234–242.

    CAS  Google Scholar 

  • Dong, H., Jiang, Z., Deng, J., Zhang, C., Cheng, Y., Hou, K., Zhang, L., Tang, L., & Zeng, G. (2018). Physicochemical transformation of Fe/Ni bimetallic nanoparticles during aging in simulated groundwater and the consequent effect on contaminant removal. Water Research, 129, 51–57.

    CAS  Google Scholar 

  • Fan, W., Lu, H., & Wang, W. X. (2018). Aging influences on the biokinetics of functional TiO2 nanoparticles with different surface chemistries in Daphnia magna. Environmental Science and Technololgy, 52(14), 7901–7909.

    CAS  Google Scholar 

  • Handy, R. D., von der Kammer, F., Lead, J. R., Hassellov, M., Owen, R., & Crane, M. (2008). The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology, 17, 287–314.

  • Jiang, W., Mashayekhi, H., & Xing, B. (2009). Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Environmental Pollution, 157, 1619–1625.

    CAS  Google Scholar 

  • Kono, Y. (1978). Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Archives of Biochemistry and Biophysics, 186, 189–195.

    CAS  Google Scholar 

  • Labille, J., Feng, J., Botta, C., Borschneck, D., Sammut, M., Cabie, M., Auffan, M., Rose, J., & Bottero, J. Y. (2010). Aging of TiO(2) nanocomposites used in sunscreen. Dispersion and fate of the degradation products in aqueous environment. Environmental Pollution, 158(12), 3482–3489.

    CAS  Google Scholar 

  • Lei, C., Zhang, L., Yang, K., Zhu, L., & Lin, D. (2016). Toxicity of iron-based nanoparticles to green algae: effects of particle size, crystal phase, oxidation state and environmental aging. Environmental Pollution, 218, 505–512.

    CAS  Google Scholar 

  • Lin, X., Li, J., Ma, S., Liu, G., Yang, K., Tong, M., & Lin, D. (2014). Toxicity of TiO2 nanoparticles to Escherichia coli: effects of particle size, crystal phase and water chemistry. PLoS ONE, 9(10), e110247.

    Google Scholar 

  • Lowry, G. V., Gregory, K. B., Apte, S. C., & Lead, J. R. (2012). Transformations of nanomaterials in the environment. Environmental Science and Technololgy, 46, 6893–6899.

    CAS  Google Scholar 

  • Lu, H., Dong, H., Fan, W., Zuo, J., & Li, X. (2017). Aging and behavior of functional TiO2 nanoparticles in aqueous environment. Journal of Hazardous Materials, 325, 113–119.

    CAS  Google Scholar 

  • Mallevre, F., Alba, C., Milne, C., Gillespie, S., Fernandes, T.F., Aspray, T.J. (2016). Toxicity testing of pristine and aged silver nanoparticles in real wastewaters using bioluminescent Pseudomonas putida. Nanomaterials (Basel), 6 (3).

    Google Scholar 

  • Manier, N., Bado-Nilles, A., Delalain, P., Aguerre-Chariol, O., & Pandard, P. (2013). Ecotoxicity of non-aged and aged CeO2 nanomaterials towards freshwater microalgae. Environmental Pollution, 180, 63–70.

    CAS  Google Scholar 

  • Mishra, P. K., Mishra, H., Ekielski, A., Talegaonkar, S., & Vaidya, B. (2017). Zinc nanoparticles: a promising nanomaterial for biomedical applications. Drug Discovery Today, 22, 1825–1834.

    CAS  Google Scholar 

  • Padmavathy, N., & Vijayaraghavan, R. (2011). Interaction of ZnO nanoparticles with microbes—a physio and biochemical assay. Journal of Biomedical Nanotechnology, 7, 1–10.

    Google Scholar 

  • Planchon, M., Ferrari, R., Guyot, F., Gélabert, A., Menguy, N., Chaneac, C., Thill, A., Benedetti, M. F., & Spalla, O. (2013). Interaction between Escherichia coli and TiO2 nanoparticles in natural and artificial waters. Colloids and Surfaces B: Biointerfaces, 102, 158–164.

  • Pelletier, D. A., Suresh, A. K., Holton, G. A., McKeown, C. K., Wang, W., Gu, B., Mortensen, N. P., Allison, D. P., Joy, D. C., Allison, M. R., Brown, S. D., Phelps, T. J., & Doktycz, M. J. (2010). Effects of engineered cerium oxide nanoparticles on bacterial growth and viability. Applied Environmental Microbiology, 76(24), 7981–7989.

    CAS  Google Scholar 

  • Romero-Freire, A., Lofts, S., Martín Peinado, F. J., & van Gestel, C. A. (2017). Effects of aging and soil properties on zinc oxide nanoparticle availability and its ecotoxicological effects to the earthworm Eisenia andrei. Environmental Toxicology and Chemistry, 36(1), 137–146.

    CAS  Google Scholar 

  • Seitz, F., Lüderwald, S., Rosenfeldt, R. R., Schulz, R., & Bundschuh, M. (2015). Aging of TiO2 nanoparticles transiently increases their toxicity to the pelagic microcrustacean Daphnia magna. PLoS One, 10(5), e0126021.

    Google Scholar 

  • Simon-Deckers, A., Loo, S., Mayne-L'hermite, M., Herlin-Boime, N., Menguy, N., Reynaud, C., Gouget, B., & Carriere, M. (2009). Size-, composition- and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria. Environmental Science and Technology, 43(21), 8423–8429.

    CAS  Google Scholar 

  • Ustabasi, G. S., & Baysal, A. (2020). Bacterial interactions of microplastics extracted from toothpaste under controlled conditions and the influence of seawater. Science of the Total Environment, 703, 135024.

    CAS  Google Scholar 

  • Wang, M. M., Wang, Y. C., Wang, X. N., Liu, Y., Zhang, H., Zhang, J. W., Huang, Q., Chen, S. P., Hei, T. K., Wu, L. J., & Xu, A. (2015). Mutagenicity of ZnO nanoparticles in mammalian cells: role of physicochemical transformations under the aging process. Nanotoxicology, 9(8), 972–982.

    Google Scholar 

  • Xiao, Y., Peijnenburg, W. J., Chen, G., & Vijver, M. G. (2016). Toxicity of copper nanoparticles to Daphnia magna under different exposure conditions. Science of the Total Environment, 563-564, 81–88.

    CAS  Google Scholar 

  • Zhang, H., Huang, Q., Xu, A., & Wu, L. (2016). Spectroscopic probe to contribution of physicochemical transformations in the toxicity of aged ZnO NPs to Chlorella vulgaris: new insight into the variation of toxicity of ZnO NPs under aging process. Nanotoxicology, 10(8), 1177–1187.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asli Baysal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baysal, A., Saygin, H. & Ustabasi, G.S. Age-related physicochemical differences in ZnO nanoparticles in the seawater and their bacterial interaction. Environ Monit Assess 192, 276 (2020). https://doi.org/10.1007/s10661-020-08254-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08254-w

Keywords

Navigation