Skip to main content

Advertisement

Log in

Sources, bioaccumulation, health risks and remediation of potentially toxic metal(loid)s (As, Cd, Cr, Pb and Hg): an epitomised review

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The release of potentially toxic metal(loid)s (PTMs) such as As, Cd, Cr, Pb and Hg has become a serious threat to the environment. The anthropogenic contribution of these PTMs, especially Hg, is increasing continuously, and coal combustion in thermal power plants (TPPs) is considered to be the highest contributor of PTMs. Once entered into the environment, PTMs get deposited on the soil, which is the most important sink of these PTMs. This review centred on the sources of PTMs from coal and flyash and their enrichment in soil, chemical behaviour in soil and plant, bioaccumulation in trees and vegetables, health risk and remediation. Several remediation techniques (physical and chemical) have been used to minimise the PTMs level in soil and water, but the phytoremediation technique is the most commonly used technique for the effective removal of PTMs from contaminated soil and water. Several plant species like Brassica juncea, Pteris vittata and Helianthus annuus are proved to be the most potential candidate for the PTMs removal. Among all the PTMs, the occurrence of Hg in coal is a global concern due to the significant release of Hg into the atmosphere from coal-fired thermal power plants. Therefore, the Hg removal from pre-combustion (coal washing and demercuration techniques) coal is very essential to reduce the possibility of Hg release to the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdul, K. S. M., Jayasinghe, S. S., Chandana, E. P., Jayasumana, C., & De Silva, P. M. C. (2015). Arsenic and human health effects: A review. Environmental Toxicology and Pharmacology, 40, 828–846.

    Google Scholar 

  • Adriano, D. (2001). Trace elements in terrestrial environments: Biogeochemistry, bioavailability and risks of metals. New York: Springer.

    Google Scholar 

  • Ahluwalia, S. S., & Goyal, D. (2005). Removal of heavy metals by waste tea leaves from aqueous solution. Engineering in Life Sciences, 5, 158–162.

    CAS  Google Scholar 

  • Ahmann, D., Krumholz, L., Hemond, H., Lovley, D., & Morel, F. (1997). Microbial mobilization of arsenic from sediments of the Aberjona watershed. Environmental Science and Technology, 31, 2923–2930.

    CAS  Google Scholar 

  • Alloway, B. J. (2013). Heavy metals in soils: Trace metals and metalloids in soils and their bioavailability, Environmental Pollution (vol 22). Dordrecht, The Netherlands: Springer.

    Google Scholar 

  • Alpaslan, B., & Yukselen, M. A. (2002). Remediation of lead contaminated soils by stabilization/solidification. Water, Air, and Soil Pollution, 133, 253–263.

    CAS  Google Scholar 

  • Alvarado, S., Guédez, M., Lué-Merú, M. P., Nelson, G., Alvaro, A., Jesús, A. C., & Gyula, Z. (2008). Arsenic removal from waters by bioremediation with the aquatic plants water hyacinth (Eichhornia crassipes) and lesser duckweed (Lemna minor). Bioresource Technology, 99, 8436–8440.

  • Antoine, J. M., Fung, L. A. H., & Grant, C. N. (2017). Assessment of the potential health risks associated with the aluminium, arsenic, cadmium and lead content in selected fruits and vegetables grown in Jamaica. Toxicology Reports, 4, 181–18.7.

    CAS  Google Scholar 

  • Aransiola, S.A., Ijah, U.J.J. and Abioye, O.P. (2013). Phytoremediation of lead polluted soil by Glycine max L. Applied and Environmental Soil Science. http://dx.doi.org/10.1155/2013/631619.

  • Arazi, T., Sunkar, R., Kaplan, B., & Fromm, H. (1999). A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. Plant Journal, 20, 171–182.

    CAS  Google Scholar 

  • Arias, J. A., Peralta-Videa, J. R., Ellzey, J. T., Ren, M., Viveros, M. N., & Gardea-Torresdey, J. L. (2010). Effects of Glomus deserticola inoculation on Prosopis: Enhancing chromium and lead uptake and translocation as confirmed by X-ray mapping, ICP-OES and TEM techniques. Environmental and Experimental Botany, 68, 139–148.

  • Arikpo, G. E., Eja, M. E., Ogbonnaya, L. O., & Opara, A. A. (2004). Cadmium uptake by the green alga Chlorella emersonii. Global Journal of Pure and Applied Sciences, 10, 257–262.

    CAS  Google Scholar 

  • ASTM. (2006). ASTM D6414: Standard test methods for total mercury in coal and coal combustion residues by acid extraction or wet oxidation/cold vapour atomic absorption

  • Assi, M. A., Hezmee, M. N. M., Haron, A. W., Sabri, M. Y. M., & Rajion, M. A. (2016). The detrimental effects of lead on human and animal health. Veterinary World, 9, 660.

    CAS  Google Scholar 

  • Augustine, A. U., Onwuka, J. C., & Albert, C. Q. (2016). Determination of heavy metal concentration in Neem (Azadirachta indica) leaves, bark and soil along some major roads in Lafia, Nasarawa state Nigeria. Journal of Environmental Chemistry and Ecotoxicology, 8, 38–43.

    CAS  Google Scholar 

  • Augustsson, A., Uddh-Söderberg, T., Filipsson, M., Helmfrid, I., Berglund, M., Karlsson, H., Hogmalm, J., Karlsson, A., & Alriksson, S. (2018). Challenges in assessing the health risks of consuming vegetables in metal-contaminated environments. Environment International, 113, 269–280.

    CAS  Google Scholar 

  • Bai, X., Li, W., Chen, Y., et al. (2007). The general distributions of trace elements in Chinese coals. Coal Quality Technology, 1, 1–4 (in Chinese with English abstract).

    Google Scholar 

  • Barros Júnior, L. M., Macedo, G. R., Duarte, M. M. L., Silva, E. P., & Lobato, A. K. C. L. (2003). Biosorption of cadmium using the fungus Aspergillus niger. Brazilian Journal of Chemical Engineering, 20, 229–239.

  • Bartoňová, L., Klika, Z., & Spears, D. A. (2007). Characterization of unburned carbon from ash after bituminous coal and lignite combustion in CFBs. Fuel, 86, 455–463.

    Google Scholar 

  • Basha, A. M., Yasovardhan, N., Satyanarayana, S. V., Reddy, G. V. S., & Kumar, A. V. (2014). Trace metals in vegetables and fruits cultivated around the surroundings of Tummalapalle uranium mining site, Andhra Pradesh, India. Toxicology Reports, 1, 505–512.

    CAS  Google Scholar 

  • Bhuiyan, M. A., Parvez, L., Islam, M. A., Dampare, S. B., & Suzuki, S. (2010). Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. Journal of Hazardous Materials, 173, 384–392.

    CAS  Google Scholar 

  • Bidar, G., Waterlot, C., Verdin, A., Proix, N., Courcot, D., Détriché, S., Fourrier, H., Richard, A., & Douay, F. (2016). Sustainability of an in situ aided phytostabilisation on highly contaminated soils using fly ashes: Effects on the vertical distribution of physicochemical parameters and trace elements. Journal of Environmental Management, 171, 204–216.

    CAS  Google Scholar 

  • Bower, J., Savage, K. S., Weinman, B., Barnett, M. O., Hamilton, W. P., & Harper, W. F. (2008). Immobilization of mercury by pyrite (FeS2). Environmental Pollution, 156, 504–514.

    CAS  Google Scholar 

  • Brigden, K. and Santillo, D. (2002). Heavy metal and metalloid content of fly ash collected from the Sual, Mauban and Masinloc coal-fired power plants in the Philippines, 2002. Greenpeace AraştırmaLaboratuarıTeknikNotu, 7.

  • Brown, S. L., Chaney, R. L., Angle, J. S., & Baker, A. J. M. (1994). Phytoremediation potential of Thlaspicaerulescens and bladder campion for zinc- and cadmium-contaminated soil. Journal of Environmental Quality, 23, 1151–1157.

    CAS  Google Scholar 

  • Cheng, S. F., Huang, C. Y., Lin, Y. C., Lin, S. C., & Chen, K. L. (2015). Phytoremediation of lead using corn in contaminated agricultural land—An in situ study and benefit assessment. Ecotoxicology and Environmental Safety, 111, 72–77.

    CAS  Google Scholar 

  • Choong, T. S. Y., Chuah, T., Robiah, Y., Gregory Koay, F., & Azni, I. (2007). Arsenic toxicity, health hazards and removal techniques from water: An overview. Desalination, 217, 139–166.

    CAS  Google Scholar 

  • CoŞKun, M., Steinnes, E., Frontasyeva, M. V., Sjobakk, T. E., & Demkina, S. (2006). Heavy metal pollution of surface soil in the Thrace region, Turkey. Environmental Monitoring and Assessment, 119, 545–556.

    Google Scholar 

  • Dai, S., & Ren, D. (2007). Effects of magmatic intrusion on mineralogy and geochemistry of coals from the Fengfeng–Handan coalfield, Hebei, China. Energy & Fuels, 21, 1663–1673.

  • Dickinson, N. M., Baker, A. J. M., Doronila, A., Laidlaw, S., & Reeves, R. D. (2009). Phytoremediation of inorganics: Realism and synergies. International Journal of Phytoremediation, 11, 97–114.

    CAS  Google Scholar 

  • Douay, F., Roussel, H., Fourrier, H., Heyman, C., & Chateau, G. (2007). Investigation of heavy metal concentrations on urban soils, dust and vegetables nearby a former smelter site in Mortagne du Nord, northern France. Journal of Soils and Sediments, 7, 143–146.

    CAS  Google Scholar 

  • Dumat, C., Quenea, K., Bermond, A., Toinen, S., & Benedetti, M. F. (2006). Study of the trace metal ion influence on the turnover of soil organic matter in cultivated contaminated soils. Environmental Pollution, 142, 521–529.

    CAS  Google Scholar 

  • Dziok, T. and Strugała, A. (2017). Method selection for mercury removal from hard coal. In E3S Web of Conferences, EDP Sciences, 14, 02007.

  • EA. (2009). Contaminants in soil: Updated collation of toxicological data and intake values for humans. Mercury. Science Report SC050021/SR TOX7. Bristol: Environment Agency.

  • Emsley, J. (2001). Chromium. Nature’s building blocks: An A–Z guide to the elements. Oxford: Oxford University Press.

    Google Scholar 

  • Erickson, T.B., Ahrens, W.R., Aks, S., Baum, C. and Ling, L. (2005). Pediatric toxicology: Diagnosis and management of the poisoned child. McGraw Hill Professional.

  • Fayiga, A. O., Ipinmoroti, M. O., & Chirenje, T. (2018). Environmental pollution in Africa. Environment, Development and Sustainability, 20, 41–73.

    Google Scholar 

  • Finkelman, R. B. (1993). Trace and minor elements in coal. In Organic geochemistry (pp. 593–607). New York: Springer.

    Google Scholar 

  • Fitz, W., & Wenzel, W. (2002). Arsenic transformations in the soil–rhizosphere–plant system: Fundamentals and potential application to phytoremediation. Journal of Biotechnology, 99, 259–278.

    CAS  Google Scholar 

  • Font, O., Córdoba, P., Leiva, C., Romeo, L. M., Bolea, I., Guedea, I., Moreno, N., Querol, X., Fernandez, C., & Díez, L. I. (2012). Fate and abatement of mercury and other trace elements in a coal fluidised bed oxy combustion pilot plant. Fuel, 95, 272–281.

    CAS  Google Scholar 

  • Galbreath, K. C., & Zygarlicke, C. J. (2000). Mercury transformations in coal combustion flue gas. Fuel Processing Technology, 65, 289–310.

    Google Scholar 

  • Galunin, E., Ferreti, J., Zapelini, I., Vieira, I., Tarley, C. R. T., Abrão, T., & Santos, M. J. (2014). Cadmium mobility in sediments and soils from a coal mining area on Tibagi River watershed: Environmental risk assessment. Journal of Hazardous Materials, 265, 280–287.

    CAS  Google Scholar 

  • Ginn, B. R., Szymanowski, J. S., & Fein, J. B. (2008). Metal and proton binding onto the roots of Fescue rubra. Chemical Geology, 253, 130–135.

  • Gowd, S. S., Reddy, M. R., & Govil, P. K. (2010). Assessment of heavy metal contamination in soils at Jajmau (Kanpur) and Unnao industrial areas of the Ganga Plain, Uttar Pradesh, India. Journal of Hazardous Materials, 174, 113–121.

    CAS  Google Scholar 

  • Grover, P., Rekhadevi, P. V., Danadevi, K., Vuyyuri, S. B., Mahboob, M., & Rahman, M. F. (2010). Genotoxicity evaluation in workers occupationally exposed to lead. International Journal of Hygiene and Environmental Health, 213, 99–106.

    CAS  Google Scholar 

  • Guerra, F., Trevizam, A. R., Muraoka, T., Marcante, N. C., & Canniatti-Brazaca, S. G. (2012). Heavy metals in vegetables and potential risk for human health. Scientia Agricola, 69, 54–60.

    CAS  Google Scholar 

  • Halim, M. A., Majumder, R. K., & Zaman, M. N. (2015). Paddy soil heavy metal contamination and uptake in rice plants from the adjacent area of Barapukuria coal mine, Northwest Bangladesh. Arabian Journal of Geosciences, 8, 3391–3401.

    CAS  Google Scholar 

  • Hou, W., Chen, X., Song, G., Wang, Q., & Chang, C. C. (2007). Effects of copper and cadmium on heavy metal polluted waterbody restoration by duckweed (Lemna minor). Plant Physiology and Biochemistry, 45, 62–69.

  • Issaro, N., Abi-Ghanem, C., & Bermond, A. (2009). Fractionation studies of mercury in soils and sediments: a review of the chemical reagents used for mercury extraction. Analytica Chimica Acta, 631, 1–12.

    CAS  Google Scholar 

  • Ito, S., Yokoyama, T., & Asakura, K. (2006). Emissions of mercury and other trace elements from coal-fired power plants in Japan. Science of the Total Environment, 368, 397–402.

    CAS  Google Scholar 

  • Iwashita, A., Tanamachi, S., Nakajima, T., Takanashi, H., & Ohki, A. (2004). Removal of mercury from coal by mild pyrolysis and leaching behavior of mercury. Fuel, 83, 631–638.

    CAS  Google Scholar 

  • Jambhulkar, H. P., & Juwarkar, A. A. (2009). Assessment of bioaccumulation of heavy metals by different plant species grown on fly ash dump. Ecotoxicology and Environmental Safety, 72, 1122–1128.

    CAS  Google Scholar 

  • James, B. R. (1996). The challenge of remediating chromium-contaminated soil. Environmental Science and Technology, 30, 248–251.

    Google Scholar 

  • Jang, Y.C., Somanna, Y. and Kim, H. (2016). Source, distribution, toxicity and remediation of arsenic in the environment—A review. International Journal of Applied Environmental Sciences, 11559-581.

  • Jenkins, D. (1980). Biological monitoring of toxic trace metals. Toxic trace metals in plants and animals of the world. Part I (Vol. 2). Las Vegas: U.S. Environmental Protection Agency.

  • Jiang, W., Liu, D., & Hou, W. (2001). Hyperaccumulation of cadmium by roots, bulbs and shoots of garlic (Allium sativum L.). Bioresource Technology, 76, 9–13.

  • Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soils and plants (3rd ed.). Boca Raton: CRC Press.

    Google Scholar 

  • Kahkha, M. R. R., Bagheri, S., Noori, R., Piri, J., & Javan, S. (2017). Examining total concentration and sequential extraction of heavy metals in agricultural soil and wheat. Polish Journal of Environmental Studies, 26, 2021–2028.

    CAS  Google Scholar 

  • Ketris, M. P., & Yudovich, Y. E. (2009). Estimations of Clarkes for carbonaceous biolithes: World averages for trace element contents in black shales and coals. International Journal of Coal Geology, 78, 135–148.

    CAS  Google Scholar 

  • Kim, J. Y., & Chon, H. T. (2001). Pollution of a water course impacted by acid mine drainage in the Imgok creek of the Gangreung coal field, Korea. Applied Geochemistry, 16, 1387–1396.

    CAS  Google Scholar 

  • Kirkham, M. B. (2006). Cadmium in plants on polluted soils: Effects of soil factors, hyperaccumulation, and amendments. Geoderma, 137, 19–32.

    CAS  Google Scholar 

  • Knezevic, M., Stankovic, D., Krstic, B., Nikolic, M. S., & Vilotic, D. (2009). Concentrations of heavy metals in soil and leaves of plant species Paulownia elongata SY Hu and Paulownia fortunei Hemsl. African Journal of Biotechnology, 8, 5422-5429.

  • Kolker, A., Senior, C., van Alphen, C., Koenig, A., & Geboy, N. (2017). Mercury and trace element distribution in density separates of a south African Highveld (# 4) coal: Implications for mercury reduction and preparation of export coal. International Journal of Coal Geology, 170, 7–13.

    CAS  Google Scholar 

  • Kopittke, P. M., Asher, C. J., Kopittke, R. A., & Menzies, N. W. (2007). Toxic effects of Pb2+ on growth of cowpea (Vigna unguiculata). Environmental Pollution, 150, 280–287.

  • Kotas, J., & Stasicka, Z. (2000). Chromium occurrence in the environment and methods of its speciation. Environmental Pollution, 107, 263–283.

    CAS  Google Scholar 

  • Koukouzas, N., Ketikidis, C., & Itskos, G. (2011). Heavy metal characterization of CFB-derived coal fly ash. Fuel Processing Technology, 92, 441–446.

    CAS  Google Scholar 

  • Krzesłowska, M., Lenartowska, M., Samardakiewicz, S., Bilski, H. and Woźny, A. (2010). Lead deposited in the cell wall of Funaria hygrometrica protonemata is not stable–a remobilization can occur. Environmental Pollution, 158, 325-338.

  • Kumar, D. and Kumar, D. (2018). Fine coal washing. Sustainable management of coal preparation. Woodhead Publishing. 179–206. https://doi.org/10.1016/B978-0-12-812632-5.00008-2.

  • Lai, H. Y., & Chen, Z. S. (2004). Effects of EDTA on solubility of cadmium, zinc, and lead and their uptake by rainbow pink and vetiver grass. Chemosphere, 55, 421–430.

    CAS  Google Scholar 

  • Lawal, O. S., Sanni, A. R., Ajayi, I. A., & Rabiu, O. O. (2010). Equilibrium, thermodynamic and kinetic studies for the biosorption of aqueous lead (II) ions onto the seed husk of Calophyllum inophyllum. Journal of Hazardous Materials, 177, 829–835.

  • Lee, C. S. L., Li, X., Shi, W., Cheung, S. C. N., & Thornton, I. (2006). Metal contamination in urban, suburban, and country park soils of Hong Kong: A study based on GIS and multivariate statistics. Science of the Total Environment, 356, 45–61.

    CAS  Google Scholar 

  • Li, Y., Yang, L., Ji, Y., Sun, H., & Wang, W. (2009). Quantification and fractionation of mercury in soils from the Chatian mercury mining deposit, southwestern China. Environmental Geochemistry and Health, 31, 617.

    Google Scholar 

  • Li, L., Pan, S.W., Hu, J.J., Kuang, J.F., Qi, M., Ye, K. and Tang, N. (2013). Experimental research on fly ash modified adsorption of mercury removal efficiency of flue gas. In Advanced Materials Research, Trans Tech Publications. 800, 132–138.

  • Li, Y.J., Wang, Z.K., Qin, F.X., Fang, Z.Q., Li, X.L. and Li, G. (2018). Potentially toxic elements and health risk assessment in farmland systems around high-concentrated arsenic coal mining in Xingren. China Journal of Chemistry. https://doi.org/10.1155/2018/2198176.

  • Liang, J., & Mao, J. (2015). Source analysis of global anthropogenic lead emissions: Their quantities and species. Environmental Science and Pollution Research, 22, 7129–7138.

    CAS  Google Scholar 

  • Liu, Z., & Zhang, F. S. (2009). Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass. Journal of Hazardous Materials, 167, 933–939.

    CAS  Google Scholar 

  • Loska, K., Wiechula, D., Barska, B., Cebula, E., & Chojnecka, A. (2003). Assessment of arsenic enrichment of cultivated soils in southern Poland. Polish Journal of Environmental Studies, 12, 187–192.

    CAS  Google Scholar 

  • Lugon-Moulin, N., Zhang, M., Gadani, F., Rossi, L., Koller, D., Krauss, M., & Wagner, G. J. (2004). Critical review of the science and options for reducing cadmium in tobacco (Nicotiana tabacum L.) and other plants. Advances in Agronomy, 83, 111–180.

  • Luo, G., Ma, J., Han, J., Yao, H., Xu, M., Zhang, C., Chen, G., Gupta, R., & Xu, Z. (2013). Hg occurrence in coal and its removal before coal utilization. Fuel, 104, 70–76.

    CAS  Google Scholar 

  • Ma, J., Yamaji, N., Mitani, N., Xu, X., Su, Y., McGrath, S., & Zhao, F. (2008). Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proceedings of the National Academy of Sciences, USA, 105, 9931–9935.

    CAS  Google Scholar 

  • Macur, R., Jackson, C., Botero, L., McDermott, T., & Inskeep, W. (2004). Bacterial populations associated with the oxidation and reduction of arsenic in an unsaturated soil. Environmental Science and Technology, 38, 104–111.

    CAS  Google Scholar 

  • Madhavi, V., Reddy, A. V. B., Reddy, K. G., Madhavi, G., & Prasad, T. N. K. V. (2013). An overview on research trends in remediation of chromium. Research Journal of Recent Sciences, 2, 71–83.

    CAS  Google Scholar 

  • Maestri, E., Marmiroli, M., Visioli, G., & Marmiroli, N. (2010). Metal tolerance and hyperaccumulation: Costs and trade-offs between traits and environment. Environmental and Experimental Botany, 68, 1–13.

    CAS  Google Scholar 

  • Mansour, R. S. (2014). The pollution of tree leaves with heavy metal in Syria. International Journal of ChemTech Research, 6, 2283–2290.

    CAS  Google Scholar 

  • Markowitz, G., & Rosner, D. (2000). “Cater to the children”: The role of the lead industry in a public health tragedy, 1900–1955. American Journal of Public Health, 90, 36.

    CAS  Google Scholar 

  • Marrugo-Negrete, J., Durango-Hernández, J., Pinedo-Hernández, J., Olivero-Verbel, J., & Díez, S. (2015). Phytoremediation of mercury-contaminated soils by Jatropha curcas. Chemosphere, 127, 58–63.

    CAS  Google Scholar 

  • Masto, R. E., Sheik, S., Nehru, G., Selvi, V. A., George, J., & Ram, L. C. (2015). Assessment of environmental soil quality around Sonepur Bazari mine of Raniganj coalfield, India. Solid Earth, 6, 811–821.

    Google Scholar 

  • Maya, M., Musekiwa, C., Mthembi, P., & Crowley, M. (2015). Remote sensing and geochemistry techniques for the assessment of coal mining pollution, Emalahleni (Witbank), Mpumalanga. South African Journal of Geomatics, 4, 174–188.

    Google Scholar 

  • Megalovasilis, P., Papastergios, G., & Filippidis, A. (2013). Behavior study of trace elements in pulverized lignite, bottom ash, and fly ash of Amyntaio power station, Greece. Environmental Monitoring and Assessment, 185, 6071–6076.

    CAS  Google Scholar 

  • Mirbagherp, S. A., & Hosseini, S. N. (2004). Pilot plant investigation on petrochemical wastewater treatment for the removal of copper and chromium with the objective of reuse. Desalination, 171, 85–93.

    Google Scholar 

  • Mishra, S., Singh, V., Srivastava, S., Srivastava, R., Srivastava, M., Dass, S., Satsang, G., & Prakash, S. (1995). Studies on uptake of trivalent and hexavalent Cr by maize (Zea mays). Food and Chemical Toxicology, 33, 393–397.

  • Mishra, V. K., Tripathi, B. D., & Kim, K. H. (2009). Removal and accumulation of mercury by aquatic macrophytes from an open cast coal mine effluent. Journal of Hazardous Materials, 172, 749–754.

    CAS  Google Scholar 

  • Modabberi, S., Tashakor, M., Soltani, N. S., & Hursthouse, A. S. (2018). Potentially toxic elements in urban soils: Source apportionment and contamination assessment. Environmental Monitoring and Assessment, 190, 715.

    Google Scholar 

  • Moreno-Jiménez, E., Esteban, E., & Peñalosa, J. M. (2012). The fate of arsenic in soil–plant systems, In Reviews of environmental contamination and toxicology (pp. 1–37). New York, NY: Springer.

    Google Scholar 

  • Murakami, M., Ae, N., & Ishikawa, S. (2007). Phytoextraction of cadmium by rice (Oryza sativa L.), soybean (Glycine max (L.) Merr.), and maize (Zea mays L.). Environmental Pollution, 145, 96–103.

  • Nahar, N., Rahman, A., Nawani, N. N., Ghosh, S., & Mandal, A. (2017). Phytoremediation of arsenic from the contaminated soil using transgenic tobacco plants expressing ACR2 gene of Arabidopsis thaliana. Journal of Plant Physiology, 218, 121–126.

  • Navas-Acien, A., Guallar, E., Silbergeld, E. K., & Rothenberg, S. J. (2006). Lead exposure and cardiovascular disease—A systematic review. Environmental Health Perspectives, 115, 472–482.

    Google Scholar 

  • Niazi, N. K., Bibi, I., Fatimah, A., Shahid, M., Javed, M. T., Wang, H., Ok, Y. S., Bashir, S., Murtaza, B., Saqib, Z. A., & Shakoor, M. B. (2017). Phosphate-assisted phytoremediation of arsenic by Brassica napus and Brassica juncea: Morphological and physiological response. International Journal of Phytoremediation, 19, 670–678.

  • Ozden, B., Guler, E., Vaasma, T., Horvath, M., Kiisk, M., & Kovacs, T. (2018). Enrichment of naturally occurring radionuclides and trace elements in Yatagan and Yenikoy coal-fired thermal power plants, Turkey. Journal of Environmental Radioactivity, 188, 100–107.

    CAS  Google Scholar 

  • Pacyna, E. G., Pacyna, J. M., Steenhuisen, F., & Wilson, S. (2006). Global anthropogenic mercury emission inventory for 2000. Atmospheric Environment, 40, 4048–4063.

    CAS  Google Scholar 

  • Pagilla, K. R., & Canter, L. W. (1999). Laboratory studies on remediation of chromium-contaminated soils. Journal of Environmental Engineering, 125, 243–248.

    CAS  Google Scholar 

  • Pantuzzo, F. L., Silva, J. C. J., & Ciminelli, V. S. (2009). A fast and accurate microwave-assisted digestion method for arsenic determination in complex mining residues by flame atomic absorption spectrometry. Journal of Hazardous Materials, 168, 1636–1638. https://doi.org/10.1016/j.jhazmat.2009.03.005.

    Article  CAS  Google Scholar 

  • Park, C. H., Eom, Y., Lee, L. J. E., & Lee, T. G. (2013). Simple and accessible analytical methods for the determination of mercury in soil and coal samples. Chemosphere, 93, 9–13.

    CAS  Google Scholar 

  • Patel, M. J., Patel, J. N., & Subramanian, R. B. (2005). Effect of cadmium on growth and the activity of H2O2 scavenging enzymes in Colocassia esculentum. Plant and Soil, 273, 183–188.

  • Patel, K. S., Sharma, R., Dahariya, N. S., Yadav, A., Blazhev, B., Matini, L., & Hoinkis, J. (2015). Heavy metal contamination of tree leaves. American Journal of Analytical Chemistry, 6, 687.

    CAS  Google Scholar 

  • Pietrzykowski, M., Socha, J., & van Doorn, N. S. (2014). Linking heavy metal bioavailability (Cd, Cu, Zn and Pb) in Scots pine needles to soil properties in reclaimed mine areas. Science of the Total Environment, 470, 501–510.

    Google Scholar 

  • Pourrut, B., Perchet, G., Silvestre, J., Cecchi, M., Guiresse, M., & Pinelli, E. (2008). Potential role of NADPH-oxidase in early steps of lead-induced oxidative burst in Vicia faba roots. Journal of Plant Physiology, 165, 571–579.

  • Pöykiö, R., Mäkelä, M., Watkins, G., Nurmesniemi, H., & Olli, D. A. H. L. (2016). Heavy metals leaching in bottom ash and fly ash fractions from industrial-scale BFB-boiler for environmental risks assessment. Transactions of Nonferrous Metals Society of China, 26, 256–264.

    Google Scholar 

  • Punamiya, P., Datta, R., Sarkar, D., Barber, S., Patel, M., & Das, P. (2010). Symbiotic role of Glomusmosseae in phytoextraction of lead in vetiver grass [Chrysopogon zizanioides (L.)]. Journal of Hazardous Materials, 177, 465–474.

    CAS  Google Scholar 

  • Raj, D., & Maiti, S. K. (2019a). Bioaccumulation of potentially toxic elements in tree and vegetable species with associated health and ecological risks: A case study from a thermal power plant, Chandrapura, India. Rendiconti Lincei. Scienze Fisiche e Naturali, 30, 649–665.

    Google Scholar 

  • Raj, D., & Maiti, S. K. (2019b). Sources, toxicity, and remediation of mercury: An essence review. Environmental Monitoring and Assessment, 191, 566.

    CAS  Google Scholar 

  • Raj, D., Chowdhury, A., & Maiti, S. K. (2017). Ecological risk assessment of mercury and other heavy metals in soils of coal mining area: A case study from the eastern part of a Jharia coal field, India. Human and Ecological Risk Assessment: An International Journal, 23, 767–787.

    CAS  Google Scholar 

  • Ren, D. Y., Zhao, F. H., Dai, S. F., et al. (2006). Geochemistry of trace elements in coals, pp 268–79. Beijing: The Science Press.

    Google Scholar 

  • Rensing, C., & Rosen, B. (2009). Biogeocycles for redox-active metal(loids): As, Cu, Mn and Se. In M. Schaechter (Ed.), Encyclopedia of microbiology (pp. 205–219). Oxford: Elsevier.

    Google Scholar 

  • Revathi, K., Haribabu, T. E., & Sudha, P. N. (2011). Phytoremediation of chromium contaminated soil using sorghum plant. International Journal of Environmental Sciences, 2, 418.

    Google Scholar 

  • Reza, S. K., Baruah, U., Singh, S. K., & Das, T. H. (2015). Geostatistical and multivariate analysis of soil heavy metal contamination near coal mining area, north eastern India. Environmental Earth Sciences, 73, 5425–5433.

    CAS  Google Scholar 

  • Ribeiro, J., Da Silva, E. F., Li, Z., Ward, C., & Flores, D. (2010). Petrographic, mineralogical and geochemical characterization of the Serrinha coal waste pile (Douro coalfield, Portugal) and the potential environmental impacts on soil, sediments and surface waters. International Journal of Coal Geology, 83, 456–466.

    CAS  Google Scholar 

  • Sadiq, M. (1997). Arsenic chemistry in soils: An overview of thermodynamic predictions and field observations. Water, Air, and Soil Pollution, 93, 117–136.

    CAS  Google Scholar 

  • Sahoo, P. K., Equeenuddin, S. M., & Powell, M. A. (2016). Trace elements in soils around coal mines: Current scenario, impact and available techniques for management. Current Pollution Reports, 2, 1–14.

    CAS  Google Scholar 

  • Salido, A. L., Hasty, K. L., Lim, J. M., & Butcher, D. J. (2003). Phytoremediation of arsenic and lead in contaminated soil using Chinese brake ferns (Pteris vittata) and Indian mustard (Brassica juncea). International Journal of Phytoremediation, 5, 89–103.

  • Samani, Z., Hu, S., Hanson, A. T., & Heil, D. M. (1998). Remediation of lead contaminated soil by column extraction with EDTA: II. Modeling. Water, Air, and Soil Pollution, 102, 221–238.

    CAS  Google Scholar 

  • Sampanpanish, P., Pongsapich, W., Khaodhiar, S., & Khan, E. (2006). Chromium removal from soil by phytoremediation with weed plant species in Thailand. Water, Air, & Soil Pollution: Focus, 6, 191–206.

    CAS  Google Scholar 

  • Saravanan, A., Jayasree, R., Hemavathy, R. V., Jeevanantham, S., Hamsini, S., Kumar, S., Yaashikaa, P. R., Manivasagan, V., & Yuvaraj, D. (2019). Phytoremediation of Cr (VI) ion contaminated soil using black gram (Vigna mungo): Assessment of removal capacity. Journal of Environmental Chemical Engineering, 7, 103052.

  • Sen, T. K., & Sarzali, M. V. (2008). Adsorption of cadmium metal ion (Cd2+) from its aqueous solution by aluminium oxide and kaolin: A kinetic and equilibrium study. Journal of Environmental Research and Development, 3, 220–227.

    CAS  Google Scholar 

  • Sharma, P., & Dubey, R. S. (2005). Lead toxicity in plants. Brazilian Journal of Plant Physiology, 17, 35–52.

    CAS  Google Scholar 

  • Shukla, A. and Srivastava, S. (2019). A review of phytoremediation prospects for arsenic contaminated water and soil. In Phytomanagement of polluted sites (pp. 243-254). Elsevier.

  • Singh, R., Singh, S., Parihar, P., Singh, V. P., & Prasad, S. M. (2015). Arsenic contamination, consequences and remediation techniques: A review. Ecotoxicology and Environmental Safety, 112, 247–270.

    CAS  Google Scholar 

  • Sobukola, O. P., Adeniran, O. M., Odedairo, A. A., & Kajihausa, O. E. (2010). Heavy metal levels of some fruits and leafy vegetables from selected markets in Lagos, Nigeria. African Journal of Food Science, 4, 389–393.

    CAS  Google Scholar 

  • Souri, Z., Karimi, N., & de Oliveira, L. M. (2018). Antioxidant enzymes responses in shoots of arsenic hyperaccumulator, Isatis cappadocica Desv., under interaction of arsenate and phosphate. Environmental Technology, 39, 1316–1327.

  • Srivastava, S., Shrivastava, M., Suprasanna, P., & D'souza, S. F. (2011). Phytofiltration of arsenic from simulated contaminated water using Hydrilla verticillata in field conditions. Ecological Engineering, 37, 1937–1941.

  • Streets, D. G., Lu, Z., Levin, L., terSchure, A. F., & Sunderland, E. M. (2018). Historical releases of mercury to air, land, and water from coal combustion. Science of the Total Environment, 615, 131–140.

    CAS  Google Scholar 

  • Su, Y., Han, F. X., Chen, J., Sridhar, B. M., & Monts, D. L. (2008). Phytoextraction and accumulation of mercury in three plant species: Indian mustard (Brassica juncea), beard grass (Polypogon monospeliensis), and Chinese brake fern (Pteris vittata). International Journal of Phytoremediation, 10, 547–560.

    Google Scholar 

  • Subirés-Muñoz, J. D., García-Rubio, A., Vereda-Alonso, C., Gómez-Lahoz, C., Rodríguez-Maroto, J. M., García-Herruzo, F., & Paz-Garcia, J. M. (2011). Feasibility study of the use of different extractant agents in the remediation of a mercury contaminated soil from Almaden. Separation and Purification Technology, 79, 151–156.

    Google Scholar 

  • Sushil, S., & Batra, V. S. (2006). Analysis of fly ash heavy metal content and disposal in three thermal power plants in India. Fuel, 85, 2676–2679.

    CAS  Google Scholar 

  • Tang, X. Y., & Huang, W. H. (2004). Trace elements in Chinese coal. Beijing: The Commercial Press (In Chinese).

    Google Scholar 

  • Tessier, A., Campbell, P. G., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51, 844–851.

    CAS  Google Scholar 

  • Tomasevic, M., Rajsic, S., Dordevic, D., Tasic, M., Krstic, J., & Novakovic, V. (2004). Heavy metals accumulation in tree leaves from urban areas. Environmental Chemistry Letters, 2, 151–154.

    CAS  Google Scholar 

  • Tu, S., Ma, L. Q., Fayiga, A. O., & Zillioux, E. J. (2004). Phytoremediation of arsenic-contaminated groundwater by the arsenic hyperaccumulating fern Pteris vittata L. International Journal of Phytoremediation, 6, 35–47.

    CAS  Google Scholar 

  • USEPA. (1996). Method 3050B: Acid digestion of sediments. Sludges and Soils, Revision, p 2.

  • USEPA, 2007. Treatment technologies for mercury in soil, waste and water, EPA-542-R-07-003.

  • Uzu, G., Sobanska, S., Aliouane, Y., Pradere, P., & Dumat, C. (2009). Study of lead phytoavailability for atmospheric industrial micronic and sub-micronic particles in relation with lead speciation. Environmental Pollution, 157, 1178–1185.

    CAS  Google Scholar 

  • Vega, F. A., Andrade, M. L., & Covelo, E. F. (2010). Influence of soil properties on the sorption and retention of cadmium, copper and lead, separately and together, by 20 soil horizons: Comparison of linear regression and tree regression analyses. Journal of Hazardous Materials, 174, 522–533.

    CAS  Google Scholar 

  • Verma, S. K., Masto, R. E., Gautam, S., Choudhury, D. P., Ram, L. C., Maiti, S. K., & Maity, S. (2015). Investigations on PAHs and trace elements in coal and its combustion residues from a power plant. Fuel, 162, 138–147.

    CAS  Google Scholar 

  • Visoottiviseth, P., Francesconi, K., & Sridokchan, W. (2002). The potential of Thai indigenous plant species for the phytoremediation of arsenic contaminated land. Environmental Pollution, 118, 453–461.

    CAS  Google Scholar 

  • Wang, H. H., Shan, X. Q., Wen, B., Owens, G., Fang, J., & Zhang, S. Z. (2007). Effect of indole-3-acetic acid on lead accumulation in maize (Zea mays L.) seedlings and the relevant antioxidant response. Environmental and Experimental Botany, 61, 246–253.

    CAS  Google Scholar 

  • Wang, J., Feng, X., Anderson, C. W., Xing, Y., & Shang, L. (2012). Remediation of mercury contaminated sites—a review. Journal of Hazardous Materials, 221, 1–18.

    Google Scholar 

  • WHO (1993). Guidelines for drinking-water quality. Vol. 1: Recommendations. 2d ed. Geneva. Accessed 11 Feb 2019.

  • Xu, M., Yan, R., Zheng, C., Qiao, Y., Han, J., & Sheng, C. (2004). Status of trace element emission in a coal combustion process: A review. Fuel Processing Technology, 85, 215–237.

  • Xue, P., Yan, C., Sun, G., & Luo, Z. (2012). Arsenic accumulation and speciation in the submerged macrophyte Ceratophyllum demersum L. Environmental Science and Pollution Research, 19, 3969–3976.

  • Yan, J., Quan, G., & Ding, C. (2013). Effects of the combined pollution of lead and cadmium on soil urease activity and nitrification. Procedia Environmental Sciences, 18, 78–83.

    CAS  Google Scholar 

  • Yan, H., Gao, Y., Wu, L., Wang, L., Zhang, T., Dai, C., Xu, W., Feng, L., Ma, M., Zhu, Y. G., & He, Z. (2019). Potential use of the Pteris vittata arsenic hyperaccumulation-regulation network for phytoremediation. Journal of Hazardous Materials, 368, 386–396.

    CAS  Google Scholar 

  • Yang, Z., Fang, Z., Zheng, L., Cheng, W., Tsang, P. E., Fang, J., & Zhao, D. (2016). Remediation of lead contaminated soil by biochar-supported nano-hydroxyapatite. Ecotoxicology and Environmental Safety, 132, 224–230.

    CAS  Google Scholar 

  • Yao, D. X., Meng, J., & Zhang, Z. G. (2010). Heavy metal pollution and potential ecological risk in reclaimed soils in Huainan mining area. Journal of Coal Science and Engineering (China), 16, 316–319.

    Google Scholar 

  • Ye, W. L., Khan, M. A., McGrath, S. P., & Zhao, F. J. (2011). Phytoremediation of arsenic contaminated paddy soils with Pteris vittata markedly reduces arsenic uptake by rice. Environmental Pollution, 159, 3739–3743.

    CAS  Google Scholar 

  • Yuan, Z., Yi, H., Wang, T., Zhang, Y., Zhu, X., & Yao, J. (2017). Application of phosphate solubilizing bacteria in immobilization of Pb and Cd in soil. Environmental Science and Pollution Research, 24, 21877–21884.

    CAS  Google Scholar 

  • Yudovich, Y. E., & Ketris, M. P. (2005). Mercury in coal: a review Part 2. Coal use and environmental problems. International Journal of Coal Geology, 62, 135–165.

    CAS  Google Scholar 

  • Zayed, A. M., & Terry, N. (2003). Chromium in the environment: Factors affecting biological remediation. Plant and Soil, 249, 139–156.

    CAS  Google Scholar 

  • Zhai, M., Totolo, O., Modisi, M. P., Finkelman, R. B., Kelesitse, S. M., & Menyatso, M. (2009). Heavy metal distribution in soils near Palapye, Botswana: An evaluation of the environmental impact of coal mining and combustion on soils in a semi-arid region. Environmental Geochemistry and Health, 31, 759.

    CAS  Google Scholar 

  • Zhang, X., Zhao, F. J., Huang, Q., Williams, P. N., Sun, G. X., & Zhu, Y. G. (2009). Arsenic uptake and speciation in the rootless duckweed Wolffia globosa. New Phytologist, 182, 421–428.

    CAS  Google Scholar 

  • Zhitkovich, A. (2011). Chromium in drinking water: Sources, metabolism, and cancer risks. Chemical Research in Toxicology, 24, 1617–1629.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Ministry of Human Resource Development (MHRD, Government of India) for providing research fellowship to the first author (D.R.). The authors also acknowledge Indian Institute of Technology (Indian School of Mines), Dhanbad (India) for providing basic research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subodh Kumar Maiti.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raj, D., Maiti, S.K. Sources, bioaccumulation, health risks and remediation of potentially toxic metal(loid)s (As, Cd, Cr, Pb and Hg): an epitomised review. Environ Monit Assess 192, 108 (2020). https://doi.org/10.1007/s10661-019-8060-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-8060-5

Keywords

Navigation