Out of sight, out of mind: participatory sensing for monitoring indoor air quality

Abstract

In southern Chile, epidemiological studies have linked high levels of air pollution produced by the use of wood-burning stoves with the incidence of numerous diseases. Using a quasi-experimental design, this study explores the potential of participatory sensing strategies to transform experiences, perceptions, attitudes, and daily routine activities in 15 households equipped with wood-burning stoves in the city of Temuco, Chile. The results suggest that the experience of using a low-cost sensor improves household members’ awareness levels of air pollution. However, the information provided by the sensors does not seem to improve the participants’ self-efficacy to control air quality and protect themselves from pollution. The high degree of involvement with the participatory sensing experience indicates that the distribution of low-cost sensors could be a key element in the risk communication policies.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Akrong, C., Nortey, E., & Ofosu, J. (2017). Introduction to nonparametric statistical methods. Accra, Ghana: Akrong Publications Ltd..

    Google Scholar 

  2. Alaszewski, A. (2006). Using diaries for social research. Canterbury, UK: Sage Publications Ltd..

    Google Scholar 

  3. Aoki, P.M., Honicky, R.J., Mainwaring, A., Myers, C., Paulos, E., Subramanian, S. & Woodruff, A. (2008). Common sense: mobile environmental sensing platforms to support community action and citizen science. http://www.paulos.net/papers/2008/CommonSense%20UbiComp2008Demo.pdf aAccessed 30 January 2019. http://www.paulos.net/papers/2008/CommonSense%20UbiComp2008Demo.pdf accessed 30 January 2019

  4. Bales, E., Nikzad, N., Quick, N., Ziftci, C., Patrick, K. & Griswold, W. (2012). Citisense: mobile air quality sensing for individuals and communities design and deployment of the citisense mobile air-quality system. In: 6th international conference on pervasive computing technologies for healthcare (PervasiveHealth) and workshops, San Diego, California, 21-24 may 2012, pp. 155-158. San Diego: IEEE

  5. Barraza, F. (2015). Fine particulate matter: indoor and outdoor source apportionment at Santiago, Chile. Pontifica Universidad Católica de Chile, Santiago Chile (PhD Thesis).

  6. Black, I., & White, G. (2015). The Air Quality Egg: the Internet of Things and communal sociality. ISEA2014 Dubai: Location, 205

  7. Boso, À., Hofflinger, A. Q., Oltra, C., Alvarez, B., & Garrido, J. (2018). Public support for wood smoke mitigation policies in south-central Chile. Air Quality, Atmosphere & Health, 11(9), 1109–1119. https://doi.org/10.1007/s11869-018-0612-2.

    CAS  Article  Google Scholar 

  8. Boso, À., Oltra, C., & Hofflinger, Á. (2019). Participation in a programme for assisted replacement of wood-burning stoves in Chile: the role of sociodemographic factors, evaluation of air quality and risk perception. Energy Policy, 129, 1220–1226. https://doi.org/10.1016/j.enpol.2019.03.038.

    Article  Google Scholar 

  9. Boyatzis, R. E. (1998). Transforming qualitative information: thematic analysis and code development. Londres, UK: Sage.

    Google Scholar 

  10. Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101. https://doi.org/10.1191/1478088706qp063oa.

    Article  Google Scholar 

  11. Budde, M., Schwarz, A., Müller, T., Laquai, B., Streibl, N., Schindler, G., et al. (2018). Potential and limitations of the low-cost SDS011 particle sensor for monitoring urban air quality. ProScience, 5, 6–12. https://doi.org/10.14644/dust.2018.002.

    Article  Google Scholar 

  12. Buhl, J., Hasselkuß, M., Suski, P., & Berg, H. (2017). Automating Behavior? An Experimental Living Lab Study on the Effect of Smart Home Systems and Traffic Light Feedback on Heating Energy Consumption. Current Journal of Applied Science and Technology, 22(4):1–18

  13. Burgos, S., Ruiz, P., & Koifman, R. (2013). Changes to indoor air quality as a result of relocating families from slums to public housing. Atmospheric Environment, 70(2013), 179–185. https://doi.org/10.1016/j.atmosenv.2012.12.044.

    CAS  Article  Google Scholar 

  14. Butler, D. A., & Madhavan, G. (2017). Communicating the health effects of indoor exposure to particulate matter. Indoor Air, 27(3), 503–505. https://doi.org/10.1111/ina.12373.

    CAS  Article  Google Scholar 

  15. Cavaliere, A., Carotenuto, F., Di Gennaro, F., Gioli, B., Gualtieri, G., Martelli, F., et al. (2018). Development of low-cost air quality stations for next generation monitoring networks: calibration and validation of PM 2.5 and PM 10 sensors. Sensors (Basel), 18(9), 1–20. https://doi.org/10.3390/s18092843.

    CAS  Article  Google Scholar 

  16. Chen, R., Zhao, A., Chen, H., Zhao, Z., Cai, J., Wang, C., Yang, C., Li, H., Xu, X., Ha, S., Li, T., & Kan, H. (2015). Cardiopulmonary benefits of reducing indoor particles of outdoor origin: a randomized, double-blind cross-over trial of air purifiers. Journal of the American College of Cardiology, 65(21), 2279–2287. https://doi.org/10.1016/j.jacc.2015.03.553.

    Article  Google Scholar 

  17. Chen, R., & Zhao, A. (2011). Review of relationship between indoor and outdoor particles: I/O ratio, infiltration factor and penetration factor. Atmospheric Environment, 45(2), 275–288. https://doi.org/10.1016/j.atmosenv.2010.09.048.

    CAS  Article  Google Scholar 

  18. Conrad, C. C., & Hilchey, K. G. (2011). A review of citizen science and community-based environmental monitoring: issues and opportunities. Environmental Monitoring and Assessment, 176(1–4), 273–291. https://doi.org/10.1007/s10661-010-1582-5.

    Article  Google Scholar 

  19. Corburn, J. (2005). Street science: community knowledge and environmental health justice (1st ed.). London, UK: MIT Press.

    Google Scholar 

  20. Cortés, A., & Ridley, I. (2013). Efectos de la combustión a leña en la calidad del aire intradomiciliario: La ciudad de Temuco como caso de estudio. Revista INVI, 28(78), 257–271. https://doi.org/10.4067/S0718-83582013000200008.

    Article  Google Scholar 

  21. Dadvand, P., Parker, J., Bell, M. L., Bonzini, M., Brauer, M., Darrow, L. A., Gehring, U., Glinianaia, S. V., Gouveia, N., Ha, E. H., Leem, J. H., van den Hooven, E., Jalaludin, B., Jesdale, B. M., Lepeule, J., Morello-Frosch, R., Morgan, G. G., Pesatori, A. C., Pierik, F. H., Pless-Mulloli, T., Rich, D. Q., Sathyanarayana, S., Seo, J., Slama, R., Strickland, M., Tamburic, L., Wartenberg, D., Nieuwenhuijsen, M. J., & Woodruff, T. J. (2013). Maternal exposure to particulate air pollution and term birth weight: a multi-country evaluation of effect and heterogeneity. Environmental Health Perspectives, 121(3), 267–373. https://doi.org/10.1289/ehp.1205575.

    CAS  Article  Google Scholar 

  22. Delgado-Saborit, J. M. (2012). Use of real-time sensors to characterise human exposures to combustion related pollutants. Journal of Environmental Monitoring, 14(7), 1824–1837. https://doi.org/10.1039/c2em10996d.

    CAS  Article  Google Scholar 

  23. Díaz-Robles, L., Cortés, S., Vergara-Fernández, A., & Ortega, J. C. (2015). Short term health effects of particulate matter: a comparison between wood smoke and multi-source polluted urban areas in Chile. Aerosol and Air Quality Research, 15, 306–318. https://doi.org/10.4209/aaqr.2013.10.0316.

    Article  Google Scholar 

  24. Díaz-Robles, L. A., Fu, J. S., Vergara-Fernández, A., Etcharren, P., Schiappacasse, L., Reed, G., & Silva, M. P. (2014). Health risks caused by short term exposure to ultrafine particles generated by residential wood combustion: a case study of Temuco, Chile. Environment International, 66, 174–181. https://doi.org/10.4209/10.1016/j.envint.2014.01.017.

    Article  Google Scholar 

  25. Díaz-Robles, L. A., Ortega, J. C., Fu, J. S., Reed, G., Chow, J., Watson, J., & Moncada, J. (2018). A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: the case of Temuco, Chile. Atmospheric Environmental, 42(35), 8331–8340. https://doi.org/10.1016/j.atmosenv.2008.07.020.

    CAS  Article  Google Scholar 

  26. Fereday, J., & Muir-Cochrane, E. (2006). Demonstrating rigor using thematic analysis: a hybrid approach of inductive and deductive coding and theme development. International Journal of Qualitative Methods, 5(1), 80–92. https://doi.org/10.1177/160940690600500107.

    Article  Google Scholar 

  27. Gifford, R. (2011). The dragons of inaction: psychological barriers that limit climate change mitigation and adaptation. American Psychological Association, 66(4), 290–302. https://doi.org/10.1037/a0023566.

  28. Goldman, J., Shilton, K., Burke, J., Estrin, D., Hansen, M., Ramanathan, N., et al. (2009). Participatory sensing: a citizen-powered approach to illuminating the patterns that shape our world. In Report, Woodrow Wilson International Center for Scholars. USA: May.

    Google Scholar 

  29. Grineski, S. E. (2009). Human–environment interactions and environmental justice: how do diverse parents of asthmatic children minimize hazards? Society and Natural Resources, 22(8), 727–743. https://doi.org/10.1080/08941920802001077.

    Article  Google Scholar 

  30. Hine, D. W., Marks, A. D., Nachreiner, M., Gifford, R., & Heath, Y. (2007). Keeping the home fires burning: the affect heuristic and wood smoke pollution. Journal of Environmenal Psychology, 27(1), 26–32. https://doi.org/10.1016/j.jenvp.2007.01.001.

    Article  Google Scholar 

  31. Hofflinger, Á., Boso, À., & Oltra, C. (2019). The home halo effect: how air quality perception is influenced by place attachment. Human Ecology, 47(4), 589–600. https://doi.org/10.1007/s10745-019-00100-z.

    Article  Google Scholar 

  32. Horlick-Jones, T., & Prades, A. (2015). Translating between social worlds of policy and everyday life: the development of a group-based method to support policymaking by exploring behavioural aspects of sustainable consumption. Public Understanding of Science, 24(7), 811–826. https://doi.org/10.1177/0963662514525556.

    Article  Google Scholar 

  33. Horlick-Jones, T., Rowe, G., & Walls, J. (2007). Citizen engagement processes as information systems: the role of knowledge and the concept of translation quality. Public Understanding of Science, 16(3), 259–278. https://doi.org/10.1177/0963662506074792.

    Article  Google Scholar 

  34. Hubbell, B. J., Kaufman, A., Rivers, L., Schulte, K., Hagler, G., Clougherty, J., Cascio, W., & Costa, D. (2018). Understanding social and behavioral drivers and impacts of air quality sensor use. Science of Total Environment, 621, 886–894. https://doi.org/10.1016/j.scitotenv.2017.11.275.

    CAS  Article  Google Scholar 

  35. Ilieva, N., Nikolova, Y., Predyov, I., & Kozarev, N. (2018). Sensors applicability for PM2.5 and PM10 air concentration measurements. Journal of Chemical Techology and Metallurgy, 53(3), 496–503.

    Google Scholar 

  36. Jorquera, H., Barraza, F., Heyer, J., Valdivia, G., Schiappacasse, L. N., & Montoya, L. (2018). Indoor PM2.5 in an urban zone with heavy wood smoke pollution: the case of Temuco, Chile. Environmental Pollution, 236, 477–487. https://doi.org/10.1016/j.envpol.2018.01.085.

    CAS  Article  Google Scholar 

  37. Kanhere, S.S. (2013). Participatory sensing: crowdsourcing data from mobile smartphones in urban spaces. In: 2011 IEEE 12th international conference on mobile data management, Lulea, Sweden, 6-9 June 2013, pp. 19-26. Lulea: IEEE.

  38. Kim, S. & Paulos, E. (2010). InAir: sharing indoor air quality measurements and visual. In: Proceedings of the SIGCHI conference on human factors in computing systems, Atlanta, Georgia, 10-izations. 15 April 2010, pp. 1861-1870. Atlanta: ACM.

  39. Klepeis, N., Nelson, W., Ott, W., Robinson, J., Tsang, A., Switzer, P., Behar, J. V., Hern, S. C., & Engelmann, W. H. (2001). The National Human Activity Pattern Survey (NHAPS) a resource for assessing exposure to environmental pollutants. Journal of Exposure Analysis Environmental Epidemiology, 11(3), 231–252. https://doi.org/10.1038/sj.jea.7500165.

    CAS  Article  Google Scholar 

  40. Krueger, R. A., & Casey, M. A. (2000). Focus groups: a practical guide for applied research (3rd ed.). Thousand Oaks, California: Sage Publication Inc..

    Google Scholar 

  41. Kuznetsov, S. & Paulos, E. (2010). Rise of the expert amateur: DIY projects, communities, and cultures. In: Proceedings of the 6th nordic conference on human-computer interaction: extending boundaries, Pittsburgh, USA, 16-20 October 2010, pp. 295-304. Pittsburgh: ACM.

  42. Ministerio del Medio Ambiente. (2015). Plan de Descontaminación Atmosférica de Temuco y Padre Las Casas. http://portal.mma.gob.cl/wp-content/uploads/2016/04/Diario-Oficial-DS-8-PDA-PARA-Temuco-y-Padre-Las-Casas.pdf Accessed, (30 January 2019).

  43. Moreno-Rangel, A., Sharpe, T., Musau, F., & McGill, G. (2018). Field evaluation of a low-cost indoor air quality monitor to quantify exposure to pollutants in residential environments. Journal of Sensors and Sensor Systems, 7(1), 373–388. https://doi.org/10.5194/jsss-7-373-2018.

    Article  Google Scholar 

  44. Naeher, L. P., Brauer, M., Lipsett, M., Zelikoff, J., Simpson, C., Koenig, J., & Smith, K. (2007). Woodsmoke health effects: a review. Inhalation Toxicology, 19(1), 67–106. https://doi.org/10.1080/08958370600985875.

    CAS  Article  Google Scholar 

  45. Ngo, N. S., Kokoyo, S., & Klopp, J. (2017). Why participation matters for air quality studies: risk perceptions, understandings of air pollution and mobilization in a poor neighborhood in Nairobi, Kenya. Public Health, 142, 177–185. https://doi.org/10.1016/j.puhe.2015.07.014.

    CAS  Article  Google Scholar 

  46. O'Fallon, L. R., & Dearry, A. (2002). Community-based participatory research as a tool to advance environmental health sciences. Environmental Health Perspectives, 110(Suppl 2), 155–159. https://doi.org/10.1289/ehp.02110s2155.

    Article  Google Scholar 

  47. Oltra, C., Sala, R., Boso, À., & Asensio, S. L. (2017). Public engagement on urban air pollution: an exploratory study of two interventions. Environmental Monitoring Assessment, 189(6), 296. https://doi.org/10.1007/s10661-017-6011-6.

    CAS  Article  Google Scholar 

  48. Oltra, C., & Sala, R. (2014). A review of the social research on public perception and engagement practices in urban air pollution. Report, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Spain, (March).

  49. Pérez, R., Schilmann, A., & Riojas, H. (2010). Respiratory health effects of indoor air pollution. International Journal of Tuberculosis and Lung Disease, 14(9), 1079–1086.

    Google Scholar 

  50. Power, M. C., Weisskopf, M. G., Alexeeff, S. E., Coull, B. A., Spiro, A., & Schwartz, J. (2011). Traffic-related air pollution and cognitive function in a cohort of older men. Environmental Health Perspectives, 119(5), 682–687. https://doi.org/10.1289/ehp.1002767.

    CAS  Article  Google Scholar 

  51. Reeve, I., Scott, J., Hine, D. W., & Bhullar, N. (2013). “This is not a burning issue for me”: how citizens justify their use of wood heaters in a city with a severe air pollution problem. Energy Policy, 57, 204–211. https://doi.org/10.1016/j.enpol.2013.01.042.

    Article  Google Scholar 

  52. Reyes, R., Schueftan, A., Ruiz, C., & González, A. D. (2019). Controlling air pollution in a context of high energy poverty levels in southern Chile: clean air but colder houses? Energy Policy, 124, 301–311. https://doi.org/10.1016/j.enpol.2018.10.022.

    CAS  Article  Google Scholar 

  53. Sanhueza, P. A., Torreblanca, M. A., Díaz-Robles, L. A., Schiappacasse, L. N., Silva, M. P., & Astete, T. (2009). Particulate air pollution and health effects for cardiovascular and respiratory causes in Temuco, Chile: a wood-smoke-polluted urban area. Journal of Air Waste Management Association, 59(12), 1481–1488.

    CAS  Article  Google Scholar 

  54. Schiappacasse, L. N., Díaz-Robles, L. A., Cereceda-Balic, F., & Schwartau, P. S. (2013). Health impacts in south-central Chile due to misuse of wood-burning stoves. Electronic Journal of Energy & Environment, 1(3), 65–71. https://doi.org/10.7770/ejee-V1N3-art685.

    Article  Google Scholar 

  55. Steed, A., Spinello, S., Croxford, B. & Greenhalgh, C. (2003). E-science in the streets: urban pollution monitoring. In: Proceedings of the 2nd UK e-Science All Hands Meeting, Nottingham, UK, 2003.

  56. Stern, P. C. (2000). Toward a coherent theory of environmentally significant behavior. Journal of Social Issues, 56(3), 407–424.

    Article  Google Scholar 

  57. Tashakkori, A., & Teddlie, C. (2010). Sage handbook of mixed methods in social & behavioral research (2nd ed.). Thousand Oaks, California: Sage Publications Ltd..

    Google Scholar 

  58. Thompson, J. E. (2016). Crowd-sourced air quality studies: a review of the literature & portable sensors. Trends in Environmental Analytical Chemistry, 11(2016), 23–34. https://doi.org/10.1016/j.teac.2016.06.001.

    CAS  Article  Google Scholar 

  59. U.S. Environmental Protection Agency. (1997). Exposure factors handbook volume 3: activity factors. EPA/600/P-95/002Fa Washington, DC: U.S. EPA.

  60. Willett, W.J. (2012). Tools & strategies for social data analysis. University of California, Berkeley, USA (PhD Thesis).

  61. Wong-Parodi, G., Dias, M. B., & Taylor, M. (2018). Effect of using an indoor air quality sensor on perceptions of and behaviors toward air pollution (Pittsburgh Empowerment Library Study): online survey and interviews. JMIR mHealth and uHealth, 6(3), e48. https://doi.org/10.2196/mhealth.8273.

    Article  Google Scholar 

  62. World Health Organization. (2018a). WHO Global Ambient Air Quality Database 2018. https://www.who.int/airpollution/data/cities/en/ Accessed, (30 January 2019).

  63. World Health Organization. (2018b). Household air pollution and health 2018. https://www.who.int/news-room/fact-sheets/detail/household-air-pollution-and-health Accessed 30 January 2019.

  64. Zappi, P., Bales, E., Park, J.H., Griswold, W. & Šimunić, T. (2012). The citisense air quality monitoring mobile sensor node. In: Proceedings of the 11th ACM/IEEE conference on information processing in sensor networks, Beijing, China, 16-20 April 2012. Beijing: Association for Computing Machinery (ACM).

Download references

Acknowledgments

We would like to thank María-José Castillo and Iván Leal for their support in collecting the data. The authors gratefully acknowledge the helpful comments of the reviewers on the previous versions of the manuscript. We also thank the funder who made this research possible: This paper is part of the projects FONDECYT Iniciación 11150262 and FONDECYT Regular 1190412, funded by the Comisión Nacional de Investigación Científica y Tecnológica (CONICYT), Chile.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Àlex Boso.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Boso, À., Álvarez, B., Oltra, C. et al. Out of sight, out of mind: participatory sensing for monitoring indoor air quality. Environ Monit Assess 192, 104 (2020). https://doi.org/10.1007/s10661-019-8058-z

Download citation

Keywords

  • Air quality perception
  • Low-cost sensors
  • Persuasive technology
  • WhatsApp diaries
  • Wood-burning stoves