Simulation of the impact of the emergency control measures on the reduction of air pollutants: a case study of APEC blue

Abstract

Serious air pollution motivates governments to take control measures. However, specific emission reduction effects of various temporary emission reduction policies are difficult to evaluate. During the Asia-Pacific Economic Cooperation meeting in Beijing in 2014, the Chinese government implemented a number of emergency emission control measures in the Beijing-Tianjin-Hebei area to maintain the air quality in this region. This gave us an opportunity to quantify the effectiveness of the emission reduction measures separately and identify the efficient policy combinations for the reduction of major pollutants. In this study, we evaluated the impacts of specific emission reduction measures on the concentrations of two major air pollutants (PM2.5 and O3) under eight policy scenarios using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem). Comparing these scenarios, we found that the control policies against the primary PM2.5 emission achieved the most significant results. Meanwhile, all the emission control measures raised the ozone concentrations in different degrees, which might be partly attributed to the changes of PM2.5 concentration and the ratio of NOx and VOCs caused by the emission control measures. Our results suggest that, in VOC-sensitive areas like Beijing, emergency control measures focusing on primary PM2.5 emission could lead to significant PM2.5 reduction and relatively small ozone increase, and should be considered as a priority policy. Joint emission control at the regional scale is also important especially under unfavorable meteorological conditions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Alapaty, K., Niyogi, D., Chen, F., Pyle, P., Chandrasekar, A., & Seaman, N. (2008). Development of the flux-adjusting surface data assimilation system for mesoscale models. Journal of Applied Meteorology and Climatology, 47(9), 2331–2350. https://doi.org/10.1175/2008jamc1831.1.

    Article  Google Scholar 

  2. Balzarini, A., Pirovano, G., Honzak, L., Žabkar, R., Curci, G., Forkel, R., et al. (2015). WRF-Chem model sensitivity to chemical mechanisms choice in reconstructing aerosol optical properties. Atmospheric Environment, 115, 604–619. https://doi.org/10.1016/j.atmosenv.2014.12.033.

    CAS  Article  Google Scholar 

  3. BMEPB (2014). Beijing Municipal Environmental Protection Bureau (BMEPB), http://www.bjepb.gov.cn/bjhrb/xxgk/jgzn/jgsz/jjgjgszjzz/xcjyc/xwfb/607506/index.html.

  4. Carvalho, V. S. B., Freitas, E. D., Martins, L. D., Martins, J. A., Mazzoli, C. R., & Andrade, M. d. F. (2015). Air quality status and trends over the metropolitan area of São Paulo, Brazil as a result of emission control policies. Environmental Science & Policy, 47, 68–79. https://doi.org/10.1016/j.envsci.2014.11.001.

  5. Chen, Y., Zhao, C., Zhang, Q., Deng, Z., Huang, M., & Ma, X. (2009). Aircraft study of mountain chimney effect of Beijing, China. Journal of Geophysical Research: Atmospheres, 114(D8), doi:doi:https://doi.org/10.1029/2008JD010610.

  6. Cheng, N., Chen, Z., Sun, F., Sun, R., Dong, X., Xie, X., et al. (2018). Ground ozone concentrations over Beijing from 2004 to 2015: variation patterns, indicative precursors and effects of emission-reduction. Environmental Pollution, 237, 262–274. https://doi.org/10.1016/j.envpol.2018.02.051.

    CAS  Article  Google Scholar 

  7. Chowdhury, S., Dey, S., Tripathi, S. N., Beig, G., Mishra, A. K., & Sharma, S. (2017). “Traffic intervention” policy fails to mitigate air pollution in megacity Delhi. Environmental Science & Policy, 74, 8–13. https://doi.org/10.1016/j.envsci.2017.04.018.

    CAS  Article  Google Scholar 

  8. Ding, A. J., Fu, C. B., Yang, X. Q., Sun, J. N., Petäjä, T., Kerminen, V. M., et al. (2013). Intense atmospheric pollution modifies weather: a case of mixed biomass burning with fossil fuel combustion pollution in eastern China. Atmospheric Chemistry and Physics, 13(20), 10545–10554. https://doi.org/10.5194/acp-13-10545-2013.

    Article  Google Scholar 

  9. Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J. F., Pfister, G. G., Fillmore, D., et al. (2010). Description and evaluation of the model for ozone and related chemical tracers, version 4 (MOZART-4). Geoscientific Model Development, 3(1), 43–67. https://doi.org/10.5194/gmd-3-43-2010.

    Article  Google Scholar 

  10. Fan, S. B., Tian, L. D., Zhang, D. X., & Guo, J. J. (2016). Evaluation on the effectiveness of vehicle exhaust emission control measures during the APEC conference in Beijing. Huan Jing Ke Xue, 37(1), 74–81.

    Google Scholar 

  11. Gao, M., Carmichael, G. R., Wang, Y., Saide, P. E., Yu, M., Xin, J., et al. (2017). Modeling study of the 2010 regional haze event in the North China Plain. Atmospheric Chemistry and Physics 16 (3):1673-1691

  12. Gao, M., Liu, Z., Wang, Y., Lu, X., Ji, D., Wang, L., et al. (2016). Distinguishing the roles of meteorology, emission control measures, regional transport, and co-benefits of reduced aerosol feedbacks in “APEC blue”. Atmospheric Environment, 167, 476–486. https://doi.org/10.1016/j.atmosenv.2017.08.054.

    CAS  Article  Google Scholar 

  13. Ghude, S. D., Chate, D. M., Jena, C., Beig, G., Kumar, R., Barth, M. C., et al. (2016). Premature mortality in India due to PM2.5 and ozone exposure. Geophysical Research Letters, 43(9), 4650–4658. https://doi.org/10.1002/2016gl068949.

    CAS  Article  Google Scholar 

  14. Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C., et al. (2005). Fully coupled “online” chemistry within the WRF model. Atmospheric Environment, 39(37), 6957–6975. https://doi.org/10.1016/j.atmosenv.2005.04.027.

    CAS  Article  Google Scholar 

  15. Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., & Geron, C. (2006). Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmospheric Chemistry and Physics, 6(11), 3181–3210. https://doi.org/10.5194/acp-6-3181-2006.

    CAS  Article  Google Scholar 

  16. Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., et al. (2012). The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geoscientific Model Development, 5(6), 1471–1492. https://doi.org/10.5194/gmd-5-1471-2012.

    Article  Google Scholar 

  17. Guo, J., He, J., Liu, H., Miao, Y., Liu, H., & Zhai, P. (2016). Impact of various emission control schemes on air quality using WRF-Chem during APEC China 2014. Atmospheric Environment, 140, 311–319. https://doi.org/10.1016/j.atmosenv.2016.05.046.

    CAS  Article  Google Scholar 

  18. Guo, S., Hu, M., Zamora, M. L., Peng, J., Shang, D., Zheng, J., et al. (2014). Elucidating severe urban haze formation in China. Proceedings of the National Academy of Sciences 111 (49):17373-17378

  19. Ji, D., Gao, W., Zhang, J., Morino, Y., Zhou, L., Yu, P., et al. (2016). Investigating the evolution of summertime secondary atmospheric pollutants in urban Beijing. Science of The Total Environment 572, 289-300

    CAS  Article  Google Scholar 

  20. Li, J., Xie, S. D., Zeng, L. M., Li, L. Y., Li, Y. Q., & Wu, R. R. (2015). Characterization of ambient volatile organic compounds and their sources in Beijing, before, during, and after Asia-Pacific Economic Cooperation China 2014. Atmospheric Chemistry and Physics, 15(14), 7945–7959. https://doi.org/10.5194/acp-15-7945-2015.

    CAS  Article  Google Scholar 

  21. Li, M., Zhang, Q., Streets, D. G., He, K. B., Cheng, Y. F., Emmons, L. K., et al. (2014). Mapping Asian anthropogenic emissions of non-methane volatile organic compounds to multiple chemical mechanisms. Atmospheric Chemistry and Physics, 14(11), 5617–5638. https://doi.org/10.5194/acp-14-5617-2014.

    CAS  Article  Google Scholar 

  22. Lin, X., Trainer, M., & Liu, S. C. (1988). On the nonlinearity of the tropospheric ozone production. Journal of Geophysical Research: Atmospheres, 93(D12), 15879–15888, doi:doi:https://doi.org/10.1029/JD093iD12p15879.

  23. Liu, F., Zhang, Q., Tong, D., Zheng, B., Li, M., Huo, H., et al. (2015a). High-resolution inventory of technologies, activities, and emissions of coal-fired power plants in China from 1990 to 2010. Atmospheric Chemistry and Physics, 15(23), 13299–13317. https://doi.org/10.5194/acp-15-13299-2015.

    CAS  Article  Google Scholar 

  24. Liu, H., He, J., Guo, J., Miao, Y., Yin, J., Wang, Y., et al. (2017). The blue skies in Beijing during APEC 2014: a quantitative assessment of emission control efficiency and meteorological influence. Atmospheric Environment, 167, 235–244. https://doi.org/10.1016/j.atmosenv.2017.08.032.

    CAS  Article  Google Scholar 

  25. Liu, J., Xie, P., Wang, Y., Wang, Z., He, H., & Liu, W. (2015b). Haze observation and control measure evaluation in Jing-Jin-Ji (Beijing, Tianjin ,Hebei) area during the period of the Asia-Pacific Economic Cooperation (APEC) meeting. Bulletin of the Chinese Academy of Sciences, doi:10.16418/j.

  26. Neidell, M., & Kinney, P. L. (2010). Estimates of the association between ozone and asthma hospitalizations that account for behavioral responses to air quality information. Environmental Science & Policy, 13(2), 97–103. https://doi.org/10.1016/j.envsci.2009.12.006.

    CAS  Article  Google Scholar 

  27. Pang, J., Wu, J., Ma, Z., Liang, L. N., & Zhang, T. T. (2015). Air pollution abatement effects of replacing coal with natural gas for central heating in cities of China. China Environmental Science, 35(1), 55–61.

    CAS  Google Scholar 

  28. Sillman, S. (1999). The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments. Atmospheric Environment, 33(12), 1821–1845. https://doi.org/10.1016/S1352-2310(98)00345-8.

    CAS  Article  Google Scholar 

  29. Stauffer, D. R., & Seaman, N. L. (1990). Use of four-dimensional data assimilation in a limited-area mesoscale model. Part I: experiments with synoptic-scale data. Monthly Weather Review, 118(6), 1250–1277. https://doi.org/10.1175/1520-0493(1990)118<1250:Uofdda>2.0.Co;2.

    Article  Google Scholar 

  30. Trainer, M., Parrish, D. D., Goldan, P. D., Roberts, J., & Fehsenfeld, F. C. (2000). Review of observation-based analysis of the regional factors influencing ozone concentrations. Atmospheric Environment, 34(12), 2045–2061. https://doi.org/10.1016/S1352-2310(99)00459-8.

    CAS  Article  Google Scholar 

  31. Wang, F., Guo, J., Wu, Y., Zhang, X., Deng, M., Li, X., et al. (2014). Satellite observed aerosol-induced variability in warm cloud properties under different meteorological conditions over eastern China. Atmospheric Environment, 84, 122–132. https://doi.org/10.1016/j.atmosenv.2013.11.018.

    CAS  Article  Google Scholar 

  32. Xing, J., Wang, S. X., Jang, C., Zhu, Y., & Hao, J. M. (2011). Nonlinear response of ozone to precursor emission changes in China: a modeling study using response surface methodology. Atmospheric Chemistry and Physics 11 (10):5027-5044

  33. Xu, J., Wang, X., & Zhang, S. (2013). Risk-based air pollutants management at regional levels. Environmental Science & Policy, 25, 167–175. https://doi.org/10.1016/j.envsci.2012.09.014.

    CAS  Article  Google Scholar 

  34. Zhang, Q., Streets, D. G., Carmichael, G. R., He, K. B., Huo, H., Kannari, A., et al. (2009). Asian emissions in 2006 for the NASA INTEX-B mission. Atmospheric Chemistry and Physics, 9(14), 5131–5153. https://doi.org/10.5194/acp-9-5131-2009.

    CAS  Article  Google Scholar 

  35. Zheng, B., Huo, H., Zhang, Q., Yao, Z. L., Wang, X. T., Yang, X. F., et al. (2014). High-resolution mapping of vehicle emissions in China in 2008. Atmospheric Chemistry and Physics, 14(18), 9787–9805. https://doi.org/10.5194/acp-14-9787-2014.

    CAS  Article  Google Scholar 

  36. Zou, Y., Deng, X. J., Zhu, D., Gong, D. C., Wang, H., Li, F., et al. (2015). Characteristics of 1 year of observational data of VOCs, NOx and O3 at a suburban site in Guangzhou, China. Atmospheric Chemistry and Physics 15 (12):6625-6636

Download references

Funding

This work was funded by the National Natural Science Foundation of China (41571130010, 41821005, 41630748, 41571484, and 41671492). It was also funded by the National Key Research and Development Program of China (2018YFC1902701), and supported by the High-performance Computing Platform of Peking University. Funding for this study was also provided by the undergraduate student research training program of the Ministry of Education.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xuejun Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

•We attempt to quantify the effectiveness of individual emission reduction measures.

•Measures on primary sources provide significant emergency PM2.5 reduction results.

•O3 level rose due to the changes of PM2.5 and NOx/VOCs caused by the measures.

•Less PM2.5 reduction was achieved under more unfavorable weather conditions.

•Regional joint application of control measures could achieve better results.

Electronic supplementary material

ESM 1

(DOCX 254 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tong, P., Zhang, Q., Lin, H. et al. Simulation of the impact of the emergency control measures on the reduction of air pollutants: a case study of APEC blue. Environ Monit Assess 192, 116 (2020). https://doi.org/10.1007/s10661-019-8056-1

Download citation

Keywords

  • APEC blue
  • Emission reduction policy
  • WRF-Chem
  • PM2.5
  • Ozone
  • North China Plain