Skip to main content
Log in

Climate-environment-water: integrated and non-integrated approaches to reservoir operation

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Integrated water planning and management face multiple challenges, among which are the competing interests of several water-using sectors and changing climatic trends. This paper presents integrated and non-integrated climate-environment-water approaches for reservoir operation, illustrated with Karkhe reservoir, Iran. Reservoir operation objectives are meeting municipal, environmental, and agricultural water demands. Results show the integrated approach, which relies on multi-objective optimization of municipal, environmental, and agricultural water supply, improves the municipal, environmental, and agricultural objectives by 70, 32, and 65% compared with the objectives’ values achieved with the non-integrated approach, which implements a standard operating policy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abrahão, R., García-Garizábal, I., Merchán, D., & Causapé, J. (2015). Climate change and the water cycle in newly irrigated areas. Environmental Monitoring and Assessment, 187, 22.

    Article  Google Scholar 

  • Aiwen, Y. (2000). Impact of global climate change on China’s water resources. Environmental Monitoring and Assessment, 61(1), 187–191.

    Article  Google Scholar 

  • Conly, F. M., & Kamp, G. (2001). Monitoring the hydrology of Canadian prairie wetlands to detect the effects of climate change and land use changes. Environmental Monitoring and Assessment, 67(1–2), 195–215.

    Article  CAS  Google Scholar 

  • Croke, B.F.W. and Jakeman, A.J. (2008). "Use of the IHACRES rainfall-runoff model in arid and semi arid regions." Workshop of the National Institute of Hydrology, Roorkee, India, 28 February- 5 March.

  • Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. England: Wiley.

    Google Scholar 

  • Fallah-Mehdiour, E., Bozorg Haddad, O., Rezapour Tabari, M. M., & Marino, M. M. (2012). Extraction of decision alternatives in construction management projects: application and adaptation of NSGA-II and MOPSO. Expert Systems with Applications, 39, 2794–2803.

    Article  Google Scholar 

  • Fujino, J., Nair, R., Kainuma, M., Masui, T., & Matsuoka, Y. (2006). Multi-gas mitigation analysis on stabilization scenarios using aim global model. Energy Journal, 343–353.

  • Goodarzi, M., Abedi-Koupai, J., Heidarpour, M., & Safavi, H. M. (2016). Evaluation of the effects of climate change on groundwater recharge using a hybrid method. Water Resources Management, 30(1), 133–148.

    Article  Google Scholar 

  • Krol, M. S., Vries, M. J., Oel, P. R., & Araújo, J. C. (2011). Sustainability of small reservoirs and large scale water availability under current conditions and climate change. Water Resources Management, 25(12), 3017–3026.

    Article  Google Scholar 

  • Krysanova, V., Dickens, C., Timmerman, J., Varela-Ortega, C., Schlüter, K., Roest, K., Huntjens, P., Jaspers, F., Buiteveld, H., Moreno, E., Pedraza Carrera, J., Slámová, R., Martínková, M., Blanco, I., Esteve, P., Pringle, K., Pahl-Wostl, C., & Kabat, P. (2010). Cross-comparison of climate change adaptation strategies across large river basins in Europe, Africa and Asia. Water Resources Management, 24(14), 4121–4160.

    Article  Google Scholar 

  • Mujumdar, P. P. (2013). Climate change: a growing challenge for water management in developing countries. Water Resources Management, 27(4), 953–954.

    Article  Google Scholar 

  • Rashid, M. U., Latif, A., & Azmat, M. (2018). Optimizing irrigation deficit of multipurpose cascade reservoirs. Water Resources Management, 32(5), 1675–1687.

    Article  Google Scholar 

  • Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., Kindermann, G., Nakicenovic, N., & Rafaj, P. (2011). RCP 8.5- a scenario of comparatively high greenhouse gas emissions. Journal of Climatic Change, 33–109.

  • Sarzaeim, P., Bozorg-Haddad, O., Fallah-Mehdipour, E., & Loáiciga, H. A. (2017a). Environmental water demand assessment under climate change conditions. Environmental Monitoring and Assessment, 189–359.

  • Sarzaeim, P., Bozorg Haddad, O., Fallah-Mehdipour, E., & Loáiciga, A. H. (2017b). Climate change outlook for water resources management in a semiarid river basin: the effect of the environmental water demand. Environmental Earth Sciences, 76, 498.

    Article  Google Scholar 

  • Sarzaeim, P., Bozorg Haddad, O., Fallah-Mehdipour, E., Zolghadr-Asli, B., & Loaciaga, A. H. (2018). Optimization of run-of-river hydropower plant design under climate change conditions. Water Resources Management, 32(12), 3919–3934.

    Article  Google Scholar 

  • Shiau, J. T. (2003). Water release policy effects on the shortage characteristics for the Shihmen Reservoir system during droughts. Water Resources Management, 17(6), 463–480.

    Article  Google Scholar 

  • Shiau, J. T., Hung, Y.-N., & Sie, H.-E. (2018). Effects of hedging factors and fuzziness on shortage characteristics during droughts. Water Resources Management, 32(5), 1913–1929.

    Article  Google Scholar 

  • Tennant, D. L. (1976). Instream flow regimens for fish, wildlife, recreation and related environmental resources. Fisheries, 1(4), 6–10.

    Article  Google Scholar 

  • Thomson, A. M., Calvin, K. V., Smith, S. J., Page Kyle, G., Volke, A., Patel, P., Delgado-Arias, S., Bond-Lamberty, B., Wise, M. A., Clarke, L. E., & Edmonds, J. A. (2011). RCP 4.5: a pathway for stabilization of radiative forcing by 2100. Journal of Climatic Change, 77–109.

  • Tramblay, Y., Jarlan, L., Hanich, L., & Somot, S. (2018). Future scenarios of surface water resources availability in North African dams. Water Resources Management, 32(4), 1291–1306.

    Article  Google Scholar 

  • Van-Vuuren, D., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G., Kram, T., Krey, V., Lamarque, J. F., Masui, T., Meinhausen, M., Nakicenovic, N., Smith, S., & Rose, S. K. (2011). The representative concentration pathways: an overview. Journal of Climate Change, 109, 5–31.

    Article  Google Scholar 

  • Veijalainen, N., Dubrovin, T., Marttunen, M., & Vehviläinen, B. (2010). Climate change impacts on water resources and lake regulation in the Vuoksi Watershed in Finland. Water Resources Management, 24(13), 3437–3459.

    Article  Google Scholar 

  • Wayne, G.P. (2013). "The beginner’s guide to representative concentration pathways." Skeptical Science.

  • Weyant, J., Azar, C., Kainuma, M., Kejun, J., Nakicenovic, N., Shukla, P.R., Rovere, E-L., and Yohe G. (2009). Report of 2.6 versus 2.9 watts/m2 RCPP evaluation panel. Geneva: IPCC Secretariat.

  • Wilby, R. L., Dawson, C. W., & Barrow, E. M. (2002). SDSM—a decision support tool for the assessment of regional climate change impacts. Environmental Modelling & Software, 17(2), 147–159.

    Article  Google Scholar 

  • Wilby, R.L. and Harris, I. (2006). A Framework for Assessing Uncertainties in Climate Change Impacts: Low-Flow Scenarios for the River Thames, UK. Water Resources Research, 42, W02419.

  • Xu, C.-Y. (2000). Modelling the effects of climate change on water resources in central Sweden. Water Resources Management, 14(3), 177–189.

    Article  Google Scholar 

  • Yan, D., Yao, M., Ludwig, F., Kabat, P., Huang, H. Q., Hutjes, R. W. A., & Werners, S. E. (2018). Exploring future water shortage for large river basins under different water allocation strategies. Water Resources Management, 1–16.

  • Zolghadr-Asli, B., Bozorg Haddad, O., & Chu, X. (2019). Effects of the uncertainties of climate change on the performance of hydropower systems. Journal of Water and Climate Change, 10(3), 591–609.

    Article  Google Scholar 

Download references

Funding

This research received financial support from the National Elites Foundation and Iran’s National Science Foundation (INSF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omid Bozorg-Haddad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fallah-Mehdipour, E., Bozorg-Haddad, O. & Loáiciga, H.A. Climate-environment-water: integrated and non-integrated approaches to reservoir operation. Environ Monit Assess 192, 60 (2020). https://doi.org/10.1007/s10661-019-8039-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-8039-2

Keywords

Navigation