Skip to main content

Comparison of statistic methods for censored personal exposure to RF-EMF data

Abstract

Several studies have characterized personal exposure to RF-EMF, which allows possible effects on health to be studied. All equipment has a detection limit, below which we obtain nondetects or censored data. This problem is a challenge for researchers as it makes the analysis of such data complex. We suggest reconsidering the statistical protocols of the nondetects analysis by comparing four different methods. Three of them substitute censored data using different approaches: regression on order of statistics (ROS) to simulate data below the detection limit (Method 1), substituting nondetect values by the detection limit divided by 2 (Method 2), a naïve calculation (Method 3) using the detection limit as a valid measurement. The fourth method consists of considering censored data to be missing values (Method 4). This article examines how these methods affect the quantification of personal exposure. We considered data from 14 frequency bands from FM to WiMax measured in Albacete (Spain) for 76 days every 10 s by a personal exposimeter (PEM) Satimo EME Spy 140.

Methods 3 and 2 gave similar mean and median values to Method 1, but both underestimated the mean values when high nondetects records occurred, which conditioned the physical description of the real situation. The mean values calculated by Method 4 differed from those obtained by Method 1 but were similar when the percentage of nondetects was below 20%.

Our comparison suggests that nondetects can be neglected when the percentage of censored data is low to provide a more realistic physical situation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Aerts, S., Deschrijver, D., Joseph, W., Verloock, L., Goeminne, F., Martens, L., & Dhaene, T. (2013a). Exposure assessment of mobile phone base station radiation in an outdoor environment using sequential surrogate modeling. Bioelectromagnetics, 34, 300–311.

    Google Scholar 

  2. Aerts, S., Deschrijver, D., Verloock, L., Dhaene, T., Martens, L., & Joseph, W. (2013b). Assessment of outdoor radiofrequency electromagnetic field exposure through hotspot localization using kriging-based sequential sampling. Environmental Research, 126, 184–191.

    CAS  Google Scholar 

  3. Aminzadeh, R., Thielens, A., Bamba, A., Kone, L., Gaillot, D. P., Lienard, M., Martens, L., & Joseph, W. (2016). On-body calibration and measurements using personal radiofrequency exposimeters in indoor diffuse and specular environments. Bioelectromagnetics, 37, 298–309.

    Google Scholar 

  4. Aminzadeh, R., Thielens, A., Agneessens, S., Van Torre, P., Van den Bossche, M., Dongus, S., et al. (2018). A multi-band body-worn distributed radio-frequency exposure meter: design, on-body calibration and study of body morphology. Sensors, 18(1), 272.

    Google Scholar 

  5. Anderson, J. L., & Apostoaei, A. I. (2017). Method for analyzing left-censored bioassay data in large cohort studies. Journal of Exposure Science & Environmental Epidemiology, 27, 1–6.

    CAS  Google Scholar 

  6. Beekhuizen, J., Vermeulen, R., Kromhout, H., Buergi, A., & Huss, A. (2013). Geospatial modelling of electromagnetic fields from mobile phone base stations. Sci. Total Environ., 445, 202–209.

    Google Scholar 

  7. Bhatt, C. R., Thielens, A., Billah, B., Redmayne, M., Abramson, M. J., Sim, M. R., Vermeulen, R., Martens, L., Joseph, W., & Benke, G. (2016a). Assessment of personal exposure from radiofrequency-electromagnetic fields in Australia and Belgium using on-body calibrated exposimeters. Environmental Research, 151, 547–563.

    CAS  Google Scholar 

  8. Bhatt, C. R., Thielens, A., Redmayne, M., Abramson, M. J., Billah, B., Sim, M. R., Vermeulen, R., Martens, L., Joseph, W., & Benke, G. (2016b). Measuring personal exposure from 900 MHz mobile phone base stations in Australia and Belgium using a novel personal distributed exposimeter. Environment International, 92–93, 388–397.

    Google Scholar 

  9. Bolte, J. F. B. (2016). Lessons learnt on biases and uncertainties in personal exposure measurement surveys of radiofrequency electromagnetic fields with exposimeters. Environment International, 94, 724–735.

    Google Scholar 

  10. Bolte, J. F. B., Pruppers, M. J. M., Kamer, J., Van der Zande, G., Schipper, C. M. A., Fleurke, S. R., Kluwer, T., Van Kamp, I., & Kromhout, J. (2008). The Dutch exposimeter study: developing an activity exposure matrix. Epidemiology, 19, S78–S79.

    Google Scholar 

  11. Bolte, J. F. B., van der Zande, G., & Kamer, J. (2011). Calibration and uncertainties in personal exposure measurements of radiofrequency electromagnetic fields. Bioelectromagnetics, 32, 652–663.

    Google Scholar 

  12. Breckenkamp, J., Blettner, M., Schüz, J., Bornkessel, C., Schmiedel, S., Schlehofer, B., & Berg-Beckhoff, G. (2012). Residential characteristics and radiofrequency electromagnetic field exposures from bedroom measurements in Germany. Radiation and Environmental Biophysics, 51(1), 85–92.

    CAS  Google Scholar 

  13. Buergi, A., Frei, P., Theis, G., Mohler, E., Braun-Fahrlaender, C., Froehlich, J., Neubauer, G., Egger, M., & Roeoesli, M. (2010). A model for radiofrequency electromagnetic field predictions at outdoor and indoor locations in the context of epidemiological research. Bioelectromagnetics, 31, 226–236.

    Google Scholar 

  14. Bürgi, A., Theis, G., Siegenthaler, A., & Röösli, M. (2008). Exposure modeling of high-frequency electromagnetic fields. Journal of Exposure Science & Environmental Epidemiology, 18, 183–191.

    Google Scholar 

  15. Chiaramello, E., Bonato, M., Fiocchi, S., Tognola, G., Parazzini, M., Ravazzani, P., & Wiart, J. (2019). Radio frequency electromagnetic fields exposure assessment in indoor environments: A Review. Int J Environ Res Public Health 16(6).

  16. De Miguel-Bilbao S, Blas J, Ramos V. 2018. Effective analysis of human exposure conditions with body-worn dosimeters in the 2.4 GHz band J Vis Exp: UNSP e56525.

  17. Eeftens, M., Struchen, B., Ellen Birks, L., Cardis, E., Estarlich, M., Fernandez, M. F., Gajsek, P., Gallastegi, M., Huss, A., Kheifets, L., Meder, I. K., Olsen, J., Torrent, M., Trcek, T., Valic, B., Vermeulen, R., Vrijheied, M., van Wel, L., Guxens, M., & Roosli, M. (2018). Personal exposure to radio-frequency electromagnetic fields in Europe: is there a generation gap? Environment International, 121, 216–226.

    Google Scholar 

  18. Birks, E. L., Struchen, B., Eeftens, M., van Wel, L., Huss, A., Gajsek, P., Kheifets, L., Gallastegi, M., Dalmau-Bueno, A., Estarlich, M., Fernandez, M. F., Meder, I. K., Ferrero, A., Jimenez-Zabala, A., Torrent, M., Vrijkotte, T. G. M., Cardis, E., Olsen, J., Valic, B., Vermeulen, R., Vrijheid, M., Roeoesli, M., & Guxens, M. (2018). Spatial and temporal variability of personal environmental exposure to radio frequency electromagnetic fields in children in Europe. Environment International, 117, 204–214.

    Google Scholar 

  19. Frei, P., Mohler, E., Bürgi, A., Fröhlich, J., Neubauer, G., Braun-Fahrländer, C., Röösli, M., & QUALIFEX team. (2009). A prediction model for personal radio frequency electromagnetic field exposure. Sci. Total Environ., 408, 102–108.

    CAS  Google Scholar 

  20. Frei, P., Mohler, E., Buergi, A., Froehlich, J., Neubauer, G., Braun-Fahrlaender, C., & Roosli, M. (2010). Classification of personal exposure to radio frequency electromagnetic fields (RF-EMF) for epidemiological research: Evaluation of different exposure assessment methods. Environment International, 36, 714–720.

    Google Scholar 

  21. Frei, P., Mohler, E., Neubauer, G., Theis, G., Bürgi, A., Fröhlich, J., Braun-Fahrländer, C., Bolte, J., Egger, M., & Röösli, M. (2009b). Temporal and spatial variability of personal exposure to radio frequency electromagnetic fields. Environmental Research, 109, 779–785.

    CAS  Google Scholar 

  22. Fu, P., Hughes, J., Zeng, G., Hanook, S., Orem, J., Mwanda, O. W., & Remick, S. C. (2016). A comparative investigation of methods for longitudinal data with limits of detection through a case study. Statistical Methods in Medical Research, 25, 153–166.

    CAS  Google Scholar 

  23. Gajšek, P., Ravazzani, P., Wiart, J., Grellier, J., Samaras, T., & Thuróczy, G. (2015). Electromagnetic field exposure assessment in Europe radiofrequency fields (10 MHz-6 GHz). Journal of Exposure Science & Environmental Epidemiology, 25, 37–44.

    Google Scholar 

  24. Gallastegi, M., Huss, A., Santa-Marina, L., Aurrekoetxea, J. J., Guxens, M., Ellen Birks, L., Ibarluzea, J., Guerra, D., Roeoesli, M., & Jimenez-Zabala, A. (2018). Children’s exposure assessment of radiofrequency fields: comparison between spot and personal measurements. Environment International, 118, 60–69.

    Google Scholar 

  25. Gonzalez-Rubio, J., Arribas, E., Ramirez-Vazquez, R., & Najera, A. (2017). Radiofrequency electromagnetic fields and some cancers of unknown etiology: an ecological study. Sci. Total Environ., 599-600, 834–843.

    CAS  Google Scholar 

  26. Gonzalez-Rubio, J., Najera, A., & Arribas, E. (2016). Comprehensive personal RF-EMF exposure map and its potential use in epidemiological studies. Environmental Research, 149, 105–112.

    CAS  Google Scholar 

  27. Helsel, D. R. (2005). Nondetects and data analysis: statistics for censored environmental data 1st ed John Wiley & Sons 978-0471671732.

  28. Ibrani, M., Hamiti, E., Ahma, L., & Shala, B. (2016). Assessment of personal radio frequency electromagnetic field exposure in specific indoor workplaces and possible worst-case scenarios. AEU - International Journal of Electronics and Communications, 70(6), 808–813.

    Google Scholar 

  29. International Commission on Non-Ionizing Radiation Protection (ICNIRP), 2009. ICNIRP statement on the “Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300GHz)”http://www.icnirp.de/documents/StatementEMF.pdf.

  30. Jalilian, H., Eeftens, M., Ziaei, M., & Röösli, M. (2019). Public exposure to radiofrequency electromagnetic fields in everyday microenvironments: an updated systematic review for Europe. Environmental Research, 176, 108517.

    CAS  Google Scholar 

  31. Joseph, W., Vermeeren, G., Verloock, L., Heredia, M. M., & Martens, L. (2008). Characterization of personal RF electromagnetic field exposure and actual absorption for the general public. Health Physics, 95, 317–330.

    CAS  Google Scholar 

  32. Joseph, W., Frei, P., Röösli, M., Thuróczy, G., Gajsek, P., Trcek, T., Bolte, J., Vermeeren, G., Mohler, E., Juhász, P., Finta, V., & Martens, L. (2010a). Comparison of personal radio frequency electromagnetic field exposure in different urban areas across Europe. Environmental Research, 110, 658–663.

    CAS  Google Scholar 

  33. Joseph, W., Vermeeren, G., Verloock, L., & Martens, L. (2010b). Estimation of whole-body SAR from electromagnetic fields using personal exposure meters. Bioelectromagnetics, 31, 286–295.

    Google Scholar 

  34. Juhasz, P., Bakos, J., Nagy, N., Janossy, G., Finta, V., & Thuroczy, G. (2011). RF personal exposimetry on employees of elementary schools, kindergartens and day nurseries as a proxy for child exposures. Progress in Biophysics and Molecular Biology, 107, 449–455.

    Google Scholar 

  35. Kühnlein, A., Heumann, C., Thomas, S., Heinrich, S., & Radon, K. (2009). Personal exposure to mobile communication networks and well-being in children—a statistical analysis based on a functional approach. Bioelectromagnetics, 30, 261–269.

    Google Scholar 

  36. Markakis, I., & Samaras, T. (2013). Radiofrequency exposure in Greek indoor environments. Health Physics, 104, 293–301.

    CAS  Google Scholar 

  37. Nájera, A., González-Rubio, J., Villalba, J. M., & Arribas, E. (2015). Using multiple exposimeters to evaluate the influence of the body when measuring personal exposition to radio frequency electromagnetic fields. Compel-Int J Comput Math Electr Electron Eng, 34, 1063–1069.

  38. Radon, K., Spegel, H., Meyer, N., Klein, J., Brix, J., Wiedenhofer, A., Eder, H., Praml, G., Schulze, A., Ehrenstein, V., von Kries, R., & Nowak, D. (2006). Personal dosimetry of exposure to mobile telephone base stations? An epidemiologic feasibility study comparing the Maschek dosimeter prototype and the Antennessa DSP-090 system. Bioelectromagnetics, 27, 77–81.

    Google Scholar 

  39. Ramirez-Vazquez, R., Gonzalez-Rubio, J., Arribas, E., & Najera, A. (2019a). Characterisation of personal exposure to environmental radiofrequency electromagnetic fields in Albacete (Spain) and assessment of risk perception. Environmental Research, 172, 109–116.

    CAS  Google Scholar 

  40. Ramirez-Vazquez, R., Gonzalez-Rubio, J., Arribas, E., & Najera, A. (2019b). Personal RF-EMF exposure from mobile phone base stations during temporary events. Environmental Research, 175, 266–273.

    CAS  Google Scholar 

  41. Röösli, M. (Ed.). (2014). Epidemiology of electromagnetic fields (1st ed) CRC Press 978-1-4665-6817-4.

  42. Röösli, M., Frei, P., Bolte, J., Neubauer, G., Cardis, E., Feychting, M., Gajsek, P., Heinrich, S., Joseph, W., Mann, S., Martens, L., Mohler, E., Parslow, R. C., Poulsen, A. H., Radon, K., Schüz, J., Thuroczy, G., Viel, J. F., & Vrijheid, M. (2010). Conduct of a personal radiofrequency electromagnetic field measurement study: proposed study protocol. Environ. Health Glob. Access Sci. Source, 9, 23.

    Google Scholar 

  43. Röösli, M., Frei, P., Mohler, E., Braun-Fahrländer, C., Bürgi, A., Fröhlich, J., Neubauer, G., Theis, G., & Egger, M. (2008). Statistical analysis of personal radiofrequency electromagnetic field measurements with nondetects. Bioelectromagnetics, 29, 471–478.

    Google Scholar 

  44. Sagar, S., Dongus, S., Schoeni, A., Roser, K., Eeftens, M., Struchen, B., Foerster, M., Meier, N., Adem, S., & Röösli, M. (2018). Radiofrequency electromagnetic field exposure in everyday microenvironments in Europe: a systematic literature review. Journal of Exposure Science & Environmental Epidemiology, 28(2), 147–160.

    Google Scholar 

  45. The R Core Team. (2013). R: a language and environment for statistical computing. R Foundation for Statistical Computing.

  46. Thomas, S., Kuehnlein, A., Heinrich, S., Praml, G., von Kries, R., & Radon, K. (2008). Exposure to mobile telecommunication networks assessed using personal dosimetry and well-being in children and adolescents: the German MobilEe-study. Environmental Health, 7, 54–66.

    Google Scholar 

  47. Thuroczy, G., Molnar, F., Janossy, G., Nagy, N., Kubinyi, G., Bakos, J., & Szabo, J. (2008). Personal RF exposimetry in urban area. Ann. Telecommun., 63, 87–96.

    Google Scholar 

  48. Tomitsch, J., Dechant, E., & Frank, W. (2010). Survey of electromagnetic field exposure in bedrooms of residences in lower Austria. Bioelectromagnetics, 31, 200–208.

    Google Scholar 

  49. Trcek, T., Valic, B., & Gajsek, P. (2007). Measurements of background electromagnetic fields in human environment. In T. Jarm, P. Kramar, & A. Zupanic (Eds.), 11th Mediterr. Conf. Med. Biol. Eng. Comput. 2007 Vols 1 2 (Vol. Vol. 16). Berlin: Springer-Verlag Berlin.

    Google Scholar 

  50. Urbinello, D., Huss, A., Beekhuizen, J., Vermeulen, R., & Roeoesli, M. (2014a). Use of portable exposure meters for comparing mobile phone base station radiation in different types of areas in the cities of Basel and Amsterdam. Sci. Total Environ., 468, 1028–1033.

    Google Scholar 

  51. Urbinello, D., Joseph, W., Huss, A., Verloock, L., Beekhuizen, J., Vermeulen, R., Martens, L., & Röösli, M. (2014b). Radio-frequency electromagnetic field (RF-EMF) exposure levels in different European outdoor urban environments in comparison with regulatory limits. Environment International, 68, 49–54.

    CAS  Google Scholar 

  52. Urbinello, D., Joseph, W., Verloock, L., Martens, L., & Röösli, M. (2014c). Temporal trends of radio-frequency electromagnetic field (RF-EMF) exposure in everyday environments across European cities. Environmental Research, 134, 134–142.

    CAS  Google Scholar 

  53. Vermeeren, G., Markakis, I., Goeminne, F., Samaras, T., Martens, L., & Joseph, W. (2013). Spatial and temporal RF electromagnetic field exposure of children and adults in indoor micro environments in Belgium and Greece. Progress in Biophysics and Molecular Biology, 113, 254–263.

    Google Scholar 

  54. Viel, J. F., Clerc, S., Barrera, C., Rymzhanova, R., Moissonnier, M., Hours, M., & Cardis, E. (2009a). Residential exposure to radiofrequency fields from mobile phone base stations, and broadcast transmitters: a population-based survey with personal meter. Occupational and Environmental Medicine, 66, 550–556.

    CAS  Google Scholar 

  55. Viel, J.-F., Cardis, E., Moissonnier, M., de Seze, R., & Hours, M. (2009b). Radiofrequency exposure in the French general population: band, time, location and activity variability. Environment International, 35, 1150–1154.

    Google Scholar 

Download references

Funding

This work was supported by the Consejería de Educación de la Junta de Comunidades de Castilla-La Mancha (Spain) (ref. POII10-0308-9533).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jesus Gonzalez-Rubio.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Najera, A., Ramirez-Vazquez, R., Arribas, E. et al. Comparison of statistic methods for censored personal exposure to RF-EMF data. Environ Monit Assess 192, 77 (2020). https://doi.org/10.1007/s10661-019-8021-z

Download citation

Keywords

  • Exposimeter
  • Personal exposure
  • Radiofrequency electromagnetic fields
  • Detection limit
  • Censored data