Skip to main content
Log in

A comprehensive guide to set up correctly an electrofishing gear

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study aimed to describe the influence of different electrofishing engine configurations on electric field dispersion in water. Several experiments with original results are included. The aims were to (i) assess the equivalent electrode resistances and the output voltage at the anode, (ii) assess the influence of electrode misuse on the dispersal of the electric field in water, (iii) assess the influence of the duty cycle and the frequency on the radius of attraction around the anode, and (iv) set the voltage and the duty cycle based on information from models for backpack and bankside electrofishing engines. A synthesis of equivalent electrode resistances from different studies was created. Using an oxidised anode induced a decrease in the radius of attraction. Frequency had no influence on the radius of attraction, in contrast to the duty cycle. Models including the voltage and the duty cycle were created to enable the configuration of electrofishing engines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ainslie, B. J., Post, J. R., & Paul, A. J. (1998). Effects of pulsed and continuous DC electrofishing on juvenile rainbow trout. North American Journal of Fisheries Management, 18, 905–918.

    Article  Google Scholar 

  • Beaumont, W. R. C. (2011). Electric fishing: a complete guide to theory and practice. Wareham: Game & Wildlife Conservation Trust.

    Google Scholar 

  • Beaumont, W. R. C., Lee, M. J., & Peirson, G. (2005). The equivalent resistance and power requirements of electric fishing electrodes. Fisheries Management and Ecology, 12, 37–43.

    Article  Google Scholar 

  • Beaumont, W. R. C., Peirson, G., & Lee, M. J. (2006). Factors affecting the characteristics and propagation of voltage gradient fields from electric fishing anodes. Fisheries Management and Ecology, 13, 47–52.

    Article  Google Scholar 

  • Cowx, I. G. and P. Lamarque. 1990. Fishing with electricity. Applications in Freshwater Fisheries Management,Fishing News Books edition. Blackwell Scientific Publications, Oxford, England.

  • Cuinat, R. 1968. Contribution à l’étude de quelques paramètres physiques dans la pêche électrique en courant continu, en rivière. Pages 145–180.

  • Danielewicz-Ferchmin, I., & Ferchmin, A. R. (2004). Static permittivity of water revisited: ε in the electric field above 108 V m−1 and in the temperature range 273 ≤ T ≤ 373 K. Physical Chemistry Chemical Physics, 6, 1332–1339.

    Article  CAS  Google Scholar 

  • Dolan, C. R., & Miranda, L. E. (2004). Injury and mortality of warmwater fishes immobilized by electrofishing. North American Journal of Fisheries Management, 24, 118–127.

    Article  Google Scholar 

  • Floriano, W. B., & Nascimento, M. A. C. (2004). Dielectric constant and density of water as a function of pressure at constant temperature. Brazilian Journal of Physics, 34, 38–41.

    Article  CAS  Google Scholar 

  • Gatz, A. J. J., Loar, J. M., & Cada, C. F. (1986). Effects of repeated electroshocking on instantaneous growth of trout. North American Journal of Fisheries Management, 6, 176–182.

    Article  Google Scholar 

  • Goffaux, D., Grenouillet, G., & Kestemont, P. (2005). Electrofishing versus gillnet sampling for the assessment of fish assemblages in large rivers. Archiv für Hydrobiologie, 162, 73–90.

    Article  Google Scholar 

  • Growns, I. O., Pollard, D. A., & Harris, J. H. (1996). A comparison of electric fishing and gillnetting to examine the effects of anthropogenic disturbance on riverine fish communities. Fisheries Management and Ecology, 3, 13–24.

    Article  Google Scholar 

  • Hollender, B. A., & Carline, R. F. (1994). Injury to wild brook trout by backpack electrofishing. North American Journal of Fisheries Management, 14, 643–649.

    Article  Google Scholar 

  • Karpov, D. I., & Medvedev, D. A. (2016). Density dependence of dielectric permittivity of water and estimation of the electric field for the breakdown inception. Journal of Physics: Conference Series, 754, 102004.

    Google Scholar 

  • Kolz, A. L. 1993. In-water electrical measurements for evaluating electrofishing systems.

    Google Scholar 

  • Kolz, A. L. and Reynolds, J. B.. 1989. Determination of power threshold response curves. Pages 15–24.

  • Lafaille, P., Briand, C. F., Lafage, D., & Lasne, E. (2005). Point sampling the abundance of European eel (Anguilla anguilla) in freshwater areas. Archiv für Hydrobiologie, 162, 91–98.

    Article  Google Scholar 

  • Lamarque, P. 1968. Electrophysiologie du poisson soumis à l’action d’un champ électrique. Pages 87–110.

  • Lamarque, P., & Cuinat, R. (1960). Notions élémentaires sur la pêche électrique, les appareils français et leur utilisation. Bulletin Français de Pisciculture, 198, 5–14.

    Article  Google Scholar 

  • Levy, A., Andelman, D., & Orland, H. (2012). Dielectric constant of ionic solutions: a field-theory approach. Physical Review Letters, 108, 227801.

    Article  Google Scholar 

  • Mackereth, F. J. H., Heron, J., & Talling, J. F. (1978). Water analysis: some revised methods for limnologists. Ambleside: Freshwater Biological Association.

    Google Scholar 

  • Malmberg, C. G., & Taylor, A. A. (1956). Dielectric constant of water from 0° to 100°C. Journal of Research of the National Bureau of Standards, 56, 1–8.

    Article  CAS  Google Scholar 

  • Manceau, J.-P. (2008). Etude du phénomène de relaxation diélectrique dans les capacités Métal-Isolant-Métal. In Université Joseph-Fourier. Grenoble: Grenoble I.

    Google Scholar 

  • Mesa, M. G., & Schreck, C. B. (1989). Electrofishing mark-recapture and depletion methodologies evoke behavioral and physiological changes in cutthroat trout. Transactions of the American Fisheries Society, 118, 644–658.

    Article  Google Scholar 

  • Miranda, L. E., & Dolan, C. R. (2004). Electrofishing power requirements in relation to duty cycle. North American Journal of Fisheries Management, 24, 55–62.

    Article  Google Scholar 

  • Pinheiro, J. and Bates, D. 2015. Linear and nonlinear mixed effects models.

  • Pottier, G. (2017). Influence du substrat sur la propagation dans l’eau d’un champ électrique produit par un engin de pêche électrique. Cahier des Techniques de l’INRA, 91, 1–7.

    Google Scholar 

  • Prévost, E. and J.-L. Baglinière. 1993. Présentation et premiers éléments de mise au point d’une méthode simple d’évaluation du recrutement en juvéniles de saumon atlantique (Salmo salar) de l’année en eau courante.

  • R-Development-Core-Team. (2011). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  • Reynolds, J. B. (2016). Spheres, rings, and rods as electrodes in electrofishing: their effects on system resistance and electrical fields. Transactions of the American Fisheries Society, 145, 239–248.

    Article  Google Scholar 

  • Roussel, J. M., D. Huteau, Richard, A. and Gallet, O.. 2004. Mise au point et validation d’une méthode simple pour estimer l’abondance des juvéniles de truite en cours d’eau.

  • Scholten, M. (2003). Efficiency of point abundance sampling by electro-fishing modified for short fishes. Journal of Applied Ichthyology, 19, 265–277.

    Article  Google Scholar 

  • Sharber, N. G., & Carothers, S. W. (1988). Influence of electrofishing pulse shape on spinal injuries in adult rainbow trout. North American Journal of Fisheries Management, 8, 117–122.

    Article  Google Scholar 

  • Snyder, D. E. (2003a). Electrofishing and its harmful effects on fish. In U.S. Geological Survey Biological Resources Division. U.S. Denver: Government Printing Office.

    Google Scholar 

  • Snyder, D. E. (2003b). Invited overview: conclusions from a review of electrofishing and its harmful effects on fish. Reviews in Fish Biology and Fisheries, 13, 445–453.

    Article  Google Scholar 

  • Zuur, A. F., Leno, E. N., Walker, N., Saveliev, A. A. and Smith, G. M.. 2009. Dealing with heterogeneity. Pages 71–100.

Download references

Acknowledgements

We thank Yoann Bennevault, Yohann Clermont-Ledez, Maïra Coke, Jean-Pierre Destouche, Omar Diouach, Bernard Joseph, Dominique Huteau, Adrien Oger, Pablo Rault, Bastien Sacré, Coralie Sauvadet, and Quentin Texier for their assistance when measuring the electrical outputs. Thanks to Francis Lorieau, Sandro Parusatti, and Nicolas Roset for lending us new engines and for their assistance during the tests.

Funding

This work benefited, using the PEARL platform of INRA (1036, U3E), the support of the ANR via the “Investments for the future”, the National Infrastructure in Health Biology “ANAEE-Services” (ANR-11-INBS-0001) and financial support from the AFB INRA Gest’Aqua pole.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaétan Pottier.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• This study aimed to describe the influence of different electrofishing engine configurations on electric field dispersion in water. Several experiments with original results are included.

• Values of equivalent electrode resistances from different studies were combined in a synthetic table in order to facilitate their use in calculations when using different configurations of electrofishers.

• The influence of the anode oxidation was assessed: using an oxidised anode induced a decrease in the radius of attraction.

• The dispersal of the electric field in water was assessed: it was influenced by the output voltage at the anode and by the duty cycle.

• Models of the dispersal of the electric field in water were created for backpack and bankside electrofishing engines.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pottier, G., Marchand, F. & Beaulaton, L. A comprehensive guide to set up correctly an electrofishing gear. Environ Monit Assess 192, 22 (2020). https://doi.org/10.1007/s10661-019-8000-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-8000-4

Keywords

Navigation