Skip to main content

Advertisement

Log in

How do data-mining models consider arsenic contamination in sediments and variables importance?

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Arsenic (As) is one of the most important dangerous elements as more than 100 million of people are exposed to risk, globally. The permissible threshold of As for drinking water is 10 μg/L according to both the WHO’s drinking water guidelines and the Iranian national standard. However, several studies have indicated that As concentrations exceed this threshold value in several regions of Iran. This research evaluates an As-susceptible region, the Tajan River watershed, using the following data-mining models: multivariate adaptive regression splines (MARS), functional data analysis (FDA), support vector machine (SVM), generalized linear model (GLM), multivariate discriminant analysis (MDA), and gradient boosting machine (GBM). This study considers 12 factors for elevated As concentrations: land use, drainage density, profile curvature, plan curvature, slope length, slope degree, topographic wetness index, erosion, village density, distance from villages, precipitation, and lithology. The susceptibility mapping was conducted using training (70%) and validation (30%). The results of As contamination in sediment showed that classifications into 4 levels of concentration are very similar for two models of GLM and FDA. The GBM calculated the areas of highest arsenic contamination risk by MARS and SVM with percentages of 30.0% and 28.7%, respectively. FDA, GLM, MARS, and MDA models calculated the areas of lowest risk to be 3.3%, 23.0%, 72.0%, 25.2%, and 26.1%, respectively. The results of ROC curve reveal that the MARS, SVM, and MDA had the highest accuracies with area under the curve ROC values of 84.6%, 78.9%, and 79.5%, respectively. Land use, lithology, erosion, and elevation were the most important predictors of contamination potential with a value of 0.6, 0.59, 0.57, and 0.56, respectively. These are the most important factors. Finally, these data-mining methods can be used as appropriate, inexpensive, and feasible options to identify As-susceptible areas and can guide managers to reduce contamination in sediment of the environment and the food chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdalla, F., & Khalil, R. (2018). Potential effects of groundwater and surface water contamination in an urban area, Qus City, Upper Egypt. Journal of the African Earth Sciences, 141, 164–178. https://doi.org/10.1016/j.jafrearsci.2018.02.016.

    Article  CAS  Google Scholar 

  • Adriano, D. C. (2001). Arsenic. In Trace elements in terrestrial environments (pp. 219–261). Springer.

  • Ahmad, A., & Bhattacharya, P. (2019). Arsenic in drinking water: is 10 μg/L a safe limit? Curr. Pollut. Reports, 5, 1–3. https://doi.org/10.1007/s40726-019-0102-7.

    Article  Google Scholar 

  • Akgun, A., Sezer, E. A., Nefeslioglu, H. A., Gokceoglu, C., & Pradhan, B. (2012). An easy-to-use MATLAB program (MamLand) for the assessment of landslide susceptibility using a Mamdani fuzzy algorithm. Computational Geosciences, 38, 23–34.

    Article  Google Scholar 

  • Al-Abadi, Alaa M., Hamid Reza Pourghasemi, Shamsuddin Shahid, & Hussain B Ghalib. (2017). “Spatial mapping of groundwater potential using entropy weighted linear aggregate novel approach and GIS.” Arabian Journal for Science and Engineering, 42(3), 1185–99.

  • Ali, M. M., Ali, M. L., Islam, M. S., & Rahman, M. Z. (2016). Preliminary assessment of heavy metals in water and sediment of Karnaphuli River, Bangladesh. Environ Nanotechnology, Monit Manag., 5, 27–35. https://doi.org/10.1016/j.enmm.2016.01.002.

    Article  Google Scholar 

  • Alidadi, H., Ramezani, A., Davodi, M., Peiravi, R., Paydar, M., Dolatabadi, M., & Rafe, S. (2015). Determination of total arsenic in water resources: a case study of Rivash in Kashmar City. Heal. Scope, 4, 14–16. https://doi.org/10.17795/jhealthscope-25424.

    Article  Google Scholar 

  • Atkinson, P., Jiskoot, H., Massari, R., Murray, T. (1998). Generalized linear modelling in geomorphology 1195, 1185–1195.

  • Barzegar, R., Moghaddam, A. A., Deo, R., Fijani, E., & Tziritis, E. (2018). Mapping groundwater contamination risk of multiple aquifers using multi-model ensemble of machine learning algorithms. Science of the Total Environment, 621, 697–712.

    Article  CAS  Google Scholar 

  • Belkin, H. E., Warwick, P. D., Finkelman, R. B., Zheng, B., & Zhou, D. (1998). High arsenic coals related to sedimentary rock-hosted gold deposition in southwestern Guizhou Province, Peoples Republic of China. In Pittsburgh Coal Conference, Pittsburgh, PA (United States).

    Google Scholar 

  • Bhattacharya, P. C. (2002). Rural‐to‐urban migration in LDCs: A test of two rival models. Journal of International Development, 14(7), 951–972.

    Article  Google Scholar 

  • Bhattacharya, R., & Patrangenaru, V. (2002). Nonparametic estimation of location and dispersion on Riemannian manifolds. Journal of Statistical Planning and Inference, 108(1-2), 23–35.

  • Bhattacharya, P., Chatterjee, D., & Jacks, G. (1997). Occurrence of arsenic-contaminated groundwater in alluvial aquifers from Delta Plains, Eastern India: options for safe drinking water supply. International Journal of Water Resources Development, 13, 79–92.

    Article  Google Scholar 

  • Bickel, P. J., Chen, A., & Levina, E. (2011). The method of moments and degree distributions for network models. The Annals of Statistics, 39(5), 2280–2301.

  • Buschmann, J., Berg, M., Stengel, C., & Sampson, M. L. (2007). Arsenic and manganese contamination of drinking water resources in Cambodia: coincidence of risk areas with low relief topography. Environmental Science & Technology, 41, 2146–2152.

    Article  CAS  Google Scholar 

  • Centeno, J. A., Mullick, F. G., Martinez, L., Page, N. P., Gibb, H., Longfellow, D., ... & Ladich, E. R. (2002). Pathology related to chronic arsenic exposure. Environmental health perspectives, 110(suppl 5), 883–886.

  • Chen, Y., Jia, Z., Mercola, D., & Xie, X. (2013, 2013). A gradient boosting algorithm for survival analysis via direct optimization of concordance index. Comput. Math. Methods Med. https://doi.org/10.1155/2013/873595.

    Google Scholar 

  • Choubin, B., Darabi, H., Rahmati, O., Sajedi-Hosseini, F., & Kløve, B. (2018). River suspended sediment modelling using the CART model: a comparative study of machine learning techniques. Science of the Total Environment, 615, 272–281.

    Article  CAS  Google Scholar 

  • Couto, C., Vicente, H., Machado, J., Abelha, A., & Neves, J. (2012). Water quality modeling using artificial intelligence-based tools. International Journal of Design & Nature and Ecodynamics, 7(3), 300–309.

  • Egan, J. P. (1975). Signal detection theory and ROC analysis academic press series in cognition and perception. London: Academic.

    Google Scholar 

  • Elias, M. S., Hamzah, M. S., Rahman, S. A., Salim, N. A. A., Siong, W. B., & Sanuri, E. (2014). Ecological risk assessment of elemental pollution in sediment from Tunku Abdul Rahman National Park. Sabah. AIP Conf. Proc., 1584, 196–206. https://doi.org/10.1063/1.4866131.

    Article  CAS  Google Scholar 

  • Erdik, T., & Pektas, A. O. (2017). Rock slope damage level prediction by using multivariate adaptive regression splines (MARS). Neural Computing and Applications, 31, 1–10. https://doi.org/10.1007/s00521-017-3186-2.

    Article  Google Scholar 

  • Ezemonye, L. I., Adebayo, P. O., Enuneku, A. A., Tongo, I., & Ogbomida, E. (2019). Potential health risk consequences of heavy metal concentrations in surface water, shrimp (Macrobrachium macrobrachion) and fish (Brycinus longipinnis) from Benin River, Nigeria. Toxicology Reports, 6, 1–9. https://doi.org/10.1016/j.toxrep.2018.11.010.

    Article  CAS  Google Scholar 

  • Febrero-Bande, M., & Oviedo de la Fuente, M. (2012). Statistical computing in functional data analysis: the R package fda.usc. Journal of Statistical Software, 51, 1–28. https://doi.org/10.18637/jss.v051.i04.

    Article  Google Scholar 

  • Friedman, J. H. (1991). Multivariate adaptive regression splines. The Annals of Statistics, 19, 1–67.

    Article  Google Scholar 

  • Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of Statistics, 1189–1232.

    Article  Google Scholar 

  • Ghanbarpour, M. R., Zolfaghari, S., Geiss, C., & Darvari, Z. (2013). Investigation of river flow alterations using environmental flow assessment and hydrologic indices: Tajan River watershed, Iran. Int. J. River Basin Manag., 11, 311–321. https://doi.org/10.1080/15715124.2013.823978.

    Article  Google Scholar 

  • Gutiérrez, Á. G., Schnabel, S., & Lavado Contador, J. F. (2009). Using and comparing two nonparametric methods (CART and MARS) to model the potential distribution of gullies. Ecological Modelling, 220, 3630–3637. https://doi.org/10.1016/j.ecolmodel.2009.06.020.

    Article  Google Scholar 

  • Haghiabi, A. H. (2016). Prediction of longitudinal dispersion coefficient using multivariate adaptive regression splines. Journal of Earth System Science, 125, 985–995. https://doi.org/10.1007/s12040-016-0708-8.

    Article  CAS  Google Scholar 

  • Harper, T. R., & Kingham, N. W. (1992). Removal of arsenic from wastewater using chemical precipitation methods. Water Environment Research, 64, 200–203.

    Article  CAS  Google Scholar 

  • Hassan, E., Zainuddin, Z., & Nordin, S. (2017). A review of financial distress prediction models: logistic regression and multivariate discriminant analysis. Indian-Pacific Journal of Accounting and Finance, 1, 13–23.

    Google Scholar 

  • Hutton, M., & Symon, C. (1986). The quantities of cadmium, lead, mercury and arsenic entering the UK environment from human activities. Sci Total Environ, 57, 129–150.

    Article  CAS  Google Scholar 

  • Islam, M. S., Ahmed, M. K., Raknuzzaman, M., Habibullah-Al-Mamun, M., & Islam, M. K. (2015). Heavy metal pollution in surface water and sediment: a preliminary assessment of an urban river in a developing country. Ecological Indicators, 48, 282–291. https://doi.org/10.1016/j.ecolind.2014.08.016.

    Article  CAS  Google Scholar 

  • Jamshidi-Zanjani, A., & Saeedi, M. (2017). Multivariate analysis and geochemical approach for assessment of metal pollution state in sediment cores. Environmental Science and Pollution Research, 24, 16289–16304. https://doi.org/10.1007/s11356-017-9248-2.

    Article  CAS  Google Scholar 

  • Jiang, X., Teng, A., Xu, W., & Liu, X. (2014). Distribution and pollution assessment of heavy metals in surface sediments in the Yellow Sea. Marine Pollution Bulletin, 83, 366–375. https://doi.org/10.1016/j.marpolbul.2014.03.020.

    Article  CAS  Google Scholar 

  • Kalantar, B., Pradhan, B., Naghibi, S. A., Motevalli, A., & Mansor, S. (2018). Assessment of the effects of training data selection on the landslide susceptibility mapping: a comparison between support vector machine (SVM), logistic regression (LR) and artificial neural networks (ANN). Geomatics, Nat. Hazards Risk, 5705, 1–21. https://doi.org/10.1080/19475705.2017.1407368.

    Article  Google Scholar 

  • Khan, Y., & See, C. S. (2016). Predicting and analyzing water quality using machine learning: a comprehensive model. In 2016 IEEE Long Island Systems, Applications and Technology Conference (LISAT) (pp. 1–6). IEEE.

  • Keesstra, S. D., Bouma, J., Wallinga, J., Tittonell, P., Smith, P., Cerdà, A., & Bardgett, R. D. (2016). The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil., 2, 11–128.

    Article  Google Scholar 

  • Keesstra, S., Mol, G., de Leeuw, J., Okx, J., de Cleen, M., & Visser, S. (2018). Soil-related sustainable development goals: four concepts to make land degradation neutrality and restoration work. Land, 7(4), 133.

    Article  Google Scholar 

  • Khound, N. J., & Bhattacharyya, K. G. (2017). Multivariate statistical evaluation of heavy metals in the surface water sources of Jia Bharali River basin, north Brahmaputra plain, India. Applied Water Science, 7, 2577–2586. https://doi.org/10.1007/s13201-016-0453-9.

    Article  CAS  Google Scholar 

  • Kumar, G. P., Yadav, S. K., Thawale, P. R., Singh, S. K., & Juwarkar, A. A. (2008). Growth of Jatropha curcas on heavy metal contaminated soil amended with industrial wastes and Azotobacter—a greenhouse study. Bioresource Technology, 99, 2078–2082.

    Article  CAS  Google Scholar 

  • Li, C., Wang, J., Han, L., & Dong, D. (2012). A simulation model validation method based on functional data analysis * 516–523. https://doi.org/10.1007/978-3-642-34384-1_61.

    Book  Google Scholar 

  • Luoto, M., & Hjort, J. (2004). Generalized linear modelling in periglacial studies: terrain parameters and patterned ground. Permafrost and Periglacial Processes, 338, 327–338. https://doi.org/10.1002/ppp.482.

    Article  Google Scholar 

  • Marjanovic, M., Kovačević, M., Bajat, B., & Voženílek, V. (2011). Landslide susceptibility assessment using SVM machine learning algorithm. Engineering Geology, 123, 225–234. https://doi.org/10.1016/j.enggeo.2011.09.006.

    Article  Google Scholar 

  • Marmion, M., Hjort, J., Thuiller, W., & Luoto, M. (2009). Computers & geosciences statistical consensus methods for improving predictive geomorphology maps 35, 615–625. https://doi.org/10.1016/j.cageo.2008.02.024.

    Book  Google Scholar 

  • Mehrdadi, N., Ghobadi, M., & Hoveidi, H. (2006). Evaluation of the quality and self purification potential. Iranian J. Environ. Health Sci. Eng., 3, 199–204.

    CAS  Google Scholar 

  • Mihalovič, M. (2016). Performance comparison of multiple discriminant analysis and logit models in bankruptcy prediction. Econ. Sociol., 9, 101–118. https://doi.org/10.14254/2071-789X.2016/9-4/6.

    Article  Google Scholar 

  • Model, T. E., Encoder-decoder, N., & Tessellation, V. (2004). Learning vector quantization (LVQ) what is a vector quantization ? Neural Networks, 1–12.

  • Moore, J. W., & Ramamoorthy, S. (2012). Heavy metals in natural waters: applied monitoring and impact assessment. Springer Science & Business Media.

  • Morin, G., & Calas, G. (2006). Arsenic in soils, mine tailings, and former industrial sites. Elements, 2, 97–101.

    Article  CAS  Google Scholar 

  • Motevalli, A., Pourghasemi, H. R., & Zabihi, M. (2018). 2.12. Assessment of GIS-based machine learning algorithms for spatial modeling of landslide susceptibility: case study in Iran A2 - Huang, Bo BT - Comprehensive Geographic Information Systems. In Comprehensive geographic information systems (pp. 258–280). Oxford: Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.10461-0.

    Chapter  Google Scholar 

  • Motevalli, A., Naghibi, S. A., Hashemi, H., Berndtsson, R., Pradhan, B., & Gholami, V. (2019a). Inverse method using boosted regression tree and k-nearest neighbor to quantify effects of point and non-point source nitrate pollution in groundwater. Journal of Cleaner Production, 228, 1248–1263. https://doi.org/10.1016/j.jclepro.2019.04.293.

    Article  CAS  Google Scholar 

  • Motevalli, A., Pourghasemi, H. R. Hashemi, H. & Gholami, V. (2019b). “Assessing the Vulnerability of Groundwater to Salinization Using GIS-Based Data-Mining Techniques in a Coastal Aquifer.” In Spatial Modeling in GIS and R for Earth and Environmental Sciences, 547–72. https://doi.org/10.1016/B978-0-12-815226-3.00025-9.

    Chapter  Google Scholar 

  • Murugesan, G. S., Sathishkumar, M., & Swaminathan, K. (2006). Arsenic removal from groundwater by pretreated waste tea fungal biomass. Bioresource Technology, 97, 483–487.

    Article  CAS  Google Scholar 

  • Naghibi, S. A., Ahmadi, K., & Daneshi, A. (2017). Application of support vector machine, random forest, and genetic algorithm optimized random forest models in groundwater potential mapping. Water Resources Management, 31, 2761–2775. https://doi.org/10.1007/s11269-017-1660-3.

    Article  Google Scholar 

  • Naghibi, S. A., Pourghasemi, H. R., Pourtaghi, Z. S., & Rezaei, A. (2015). Groundwater qanat potential mapping using frequency ratio and Shannon’s entropy models in the Moghan watershed, Iran. Earth Science Informatics, 8, 171–186. https://doi.org/10.1007/s12145-014-0145-7.

    Article  Google Scholar 

  • Nandi, A., & Shakoor, A. (2010). A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Engineering Geology, 110, 11–20.

    Article  Google Scholar 

  • Natekin, A., & Knoll, A. (2013). Gradient boosting machines, a tutorial. Frontiers in Neurorobotics, 7. https://doi.org/10.3389/fnbot.2013.00021.

  • Nico, P. S., Fendorf, S. E., Lowney, Y. W., Holm, S. E., & Ruby, M. V. (2004). Chemical structure of arsenic and chromium in CCA-treated wood: implications of environmental weathering. Environmental Science & Technology, 38, 5253–5260.

    Article  CAS  Google Scholar 

  • Nordstrom, D.K., Archer, D.G., 2003. Arsenic thermodynamic data and environmental geochemistry, in: Arsenic in ground water. Springer, pp. 1–25.

  • Nriagu, J. O., Bhattacharya, P., Mukherjee, A. B., Bundschuh, J., Zevenhoven, R., & Loeppert, R. H. (2007). Arsenic in soil and groundwater: an overview. Trace Met. Other Contam. Environ., 9, 3–60. https://doi.org/10.1016/S1875-1121(06)09001-8.

    Article  CAS  Google Scholar 

  • Ozdemir, A., & Altural, T. (2013). A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey. Journal of Asian Earth Sciences, 64, 180–197.

    Article  Google Scholar 

  • Park, S., Hamm, S. Y., Jeon, H. T., & Kim, J. (2017). Evaluation of logistic regression and multivariate adaptive regression spline models for groundwater potential mapping using R and GIS. Sustain., 9. https://doi.org/10.3390/su9071157.

    Article  Google Scholar 

  • Pejman, A., Nabi Bidhendi, G., Ardestani, M., Saeedi, M., & Baghvand, A. (2015). A new index for assessing heavy metals contamination in sediments: a case study. Ecological Indicators, 58, 365–373. https://doi.org/10.1016/j.ecolind.2015.06.012.

    Article  CAS  Google Scholar 

  • Peprah, M. S., Mensah, I. O., & Akresi, J. A. (2017). Performance evaluation of multivariate adaptive regression splines (MARS) and multiple linear regression (MLR) for forward conversion of geodetic, λ, h to Cartesian coordinates (X, Y, Z) coordinates ϕ 5, 109–118. https://doi.org/10.12691/jgg-5-3-2.

    Book  Google Scholar 

  • Pourghasemi, H. R., Moradi, H. R., Fatemi Aghda, S. M., Gokceoglu, C., & Pradhan, B. (2014). GIS-based landslide susceptibility mapping with probabilistic likelihood ratio and spatial multi-criteria evaluation models (north of Tehran, Iran). Arabian Journal of Geosciences, 7, 1857–1878. https://doi.org/10.1007/s12517-012-0825-x.

    Article  Google Scholar 

  • Pourghasemi, H. R., Gayen, A., Panahi, M., Rezaie, F., & Blaschke, T. (2019). Multi-hazard probability assessment and mapping with emphasis on landslides, floods, and earthquakes in Iran. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2019.07.203.

    Article  CAS  Google Scholar 

  • Quirós, E., Felicísimo, Á. M., & Cuartero, A. (2009). Testing multivariate adaptive regression splines (MARS) as a method of land cover classification of TERRA-ASTER satellite images. Sensors, 9, 9011–9028. https://doi.org/10.3390/s91109011.

    Article  Google Scholar 

  • Rajaei, F., Sari, A. E., Salmanmahiny, A., Delavar, M., Bavani, A. R. M., & Srinivasan, R. (2017). Surface drainage nitrate loading estimate from agriculture fields and its relationship with landscape metrics in Tajan watershed. Paddy Water Environ, 15, 541–552. https://doi.org/10.1007/s10333-016-0570-y.

    Article  Google Scholar 

  • Rahmati, O., Pourghasemi, H. R., & Melesse, A. M. (2016). Application of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: a case study at Mehran Region, Iran. Catena, 137, 360–372.

    Article  Google Scholar 

  • Rezaei, A., Hassani, H., Hayati, M., Jabbari, N., & Barzegar, R. (2018). Risk assessment and ranking of heavy metals concentration in Iran’s Rayen groundwater basin using linear assignment method. Stochastic Environmental Research and Risk Assessment, 32, 1317–1336. https://doi.org/10.1007/s00477-017-1477-x.

    Article  Google Scholar 

  • Richardson, C. W., Price, J. D., & Burnett, E. (1978). Arsenic concentrations in surface runoff from small watersheds in Texas 1. Journal of Environmental Quality, 7, 189–192.

    Article  CAS  Google Scholar 

  • Roy, S.S., Pratyush, C., Barna, C., 2018. Soft computing applications 634. https://doi.org/10.1007/978-3-319-62524-9.

    Google Scholar 

  • Ruokolainen, M., Pantsar-Kallio, M., Haapa, A., & Kairesalo, T. (2000). Leaching, runoff and speciation of arsenic in a laboratory mesocosm. Sci Total Environ, 258, 139–147.

    Article  CAS  Google Scholar 

  • Sadeghi, F., Nasseri, S., Mosaferi, M., Nabizadeh, R., Yunesian, M., & Mesdaghinia, A. (2017). Statistical analysis of arsenic contamination in drinking water in a city of Iran and its modeling using GIS. Environmental Monitoring and Assessment, 189, 1–12. https://doi.org/10.1007/s10661-017-5912-8.

    Article  CAS  Google Scholar 

  • Samui, P., Kim, D., & Viswanathan, R. (2015). Spatial variability of rock depth using adaptive neuro-fuzzy inference system (ANFIS) and multivariate adaptive regression spline (MARS). Environment and Earth Science, 73, 4265–4272. https://doi.org/10.1007/s12665-014-3711-x.

    Article  Google Scholar 

  • Sanders, J. G., & Cibik, S. J. (1985). Adaptive behavior of euryhaline phytoplankton communities to arsenic stress. Mar. Ecol. Prog. Ser. Oldend., 22, 199–205.

    Article  CAS  Google Scholar 

  • Singh, R., Singh, S., Parihar, P., Singh, V. P., & Prasad, S. M. (2015). Arsenic contamination, consequences and remediation techniques: a review. Ecotoxicology and Environmental Safety, 112, 247–270. https://doi.org/10.1016/j.ecoenv.2014.10.009.

    Article  CAS  Google Scholar 

  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568.

    Article  CAS  Google Scholar 

  • Smith, A. H., Marshall, G., Yuan, Y., Ferreccio, C., Liaw, J., von Ehrenstein, O., Steinmaus, C., Bates, M. N., & Selvin, S. (2006). Increased mortality from lung cancer and bronchiectasis in young adults after exposure to arsenic in utero and in early childhood. Environmental Health Perspectives, 114, 1293.

    Article  CAS  Google Scholar 

  • Sohel, N., Persson, L. Å., Rahman, M., Streatfield, P. K., Yunus, M., Ekström, E.-C., & Vahter, M. (2009). Arsenic in drinking water and adult mortality: a population-based cohort study in rural Bangladesh. Epidemiology, 824–830.

  • Stout, W. L., Sharpley, A. N., & Landa, J. (2000). Effectiveness of coal combustion by-products in controlling phosphorus export from soils. Journal of Environmental Quality, 29, 1239–1244.

    Article  CAS  Google Scholar 

  • Tangahu, B. V., Abdullah, S., Rozaimah, S., Basri, H., Idris, M., Anuar, N., & Mukhlisin, M. (2011). A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. International Journal of Chemical Engineering, 2011.

  • Tehrany, M. S., Pradhan, B., & Jebur, M. N. (2015). Flood susceptibility analysis and its verification using a novel ensemble support vector machine and frequency ratio method. Stochastic Environmental Research and Risk Assessment, 29, 1149–1165. https://doi.org/10.1007/s00477-015-1021-9.

    Article  Google Scholar 

  • Tehrany, M. S., Pradhan, B., & Jebur, M. N. (2014). Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in {GIS}. Journal of Hydrology, 512, 332–343. https://doi.org/10.1016/j.jhydrol.2014.03.008.

    Article  Google Scholar 

  • Tenebe, I. T., Emenike, C. P., & Daniel Chukwuka, C. (2019). Prevalence of heavy metals and computation of its associated risk in surface water consumed in Ado-Odo Ota, South-West Nigeria. Hum. Ecol. Risk Assess. An Int. J., 25, 882–904. https://doi.org/10.1080/10807039.2018.1454824.

    Article  CAS  Google Scholar 

  • Tien Bui, D., Pradhan, B., Lofman, O., & Revhaug, I. (2012a). Landslide susceptibility assessment in Vietnam using support vector machines, decision tree, and nave bayes models. Mathematical Problems in Engineering, 2012. https://doi.org/10.1155/2012/974638.

    Article  Google Scholar 

  • Tien Bui, D., Pradhan, B., Lofman, O., Revhaug, I., & Dick, O. B. (2012b). Landslide susceptibility mapping at Hoa Binh province (Vietnam) using an adaptive neuro-fuzzy inference system and GIS. Computational Geosciences, 45, 199–211. https://doi.org/10.1016/j.cageo.2011.10.031.

    Article  Google Scholar 

  • Touzani, S., Granderson, J., & Fernandes, S. (2018). Gradient boosting machine for modeling the energy consumption of commercial buildings. Energy and Buildings, 158, 1533–1543. https://doi.org/10.1016/j.enbuild.2017.11.039.

    Article  Google Scholar 

  • Vaclavikova, M., Gallios, G. P., Hredzak, S., & Jakabsky, S. (2008). Removal of arsenic from water streams: an overview of available techniques. Clean Technologies and Environmental Policy, 10, 89–95.

    Article  CAS  Google Scholar 

  • Van der Bruggen, B., & Vandecasteele, C. (2003). Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry. Environmental Pollution, 122, 435–445.

    Article  Google Scholar 

  • Van Geen, A., Bostick, B. C., Trang, P. T. K., Lan, V. M., Mai, N.-N., Manh, P. D., Viet, P. H., Radloff, K., Aziz, Z., & Mey, J. L. (2013). Retardation of arsenic transport through a Pleistocene aquifer. Nature, 501, 204.

    Article  Google Scholar 

  • Varol, M. (2011). Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. Journal of Hazardous Materials, 195, 355–364. https://doi.org/10.1016/j.jhazmat.2011.08.051.

    Article  CAS  Google Scholar 

  • Wang, Y., Deng, Y., 2009. Environmental geochemistry of high-arsenic aquifer systems. Heavy Met. Environ.

  • Yang, C. C., Prasher, S. O., Lacroix, R., & Kim, S. H. (2003). A multivariate adaptive regression splines model for simulation of pesticide transport in soils. Biosystems Engineering, 86, 9–15. https://doi.org/10.1016/S1537-5110(03)00099-0.

    Article  Google Scholar 

  • Yesilnacar, E. K. (2005). The application of computational intelligence to landslide susceptibility mapping in Turkey (p. 200). University of Melbourne, Department.

  • Zabihollah, Y., Ahmad, T., Kamran, N., Younes, Y., & Aliakbar, Y. (2013). Assessment of the surface water quality in Tajan river basin, Iran. Life Science Journal, 10(3), 775-780.

  • Zhang, C., Shan, B., Tang, W., Dong, L., Zhang, W., & Pei, Y. (2017). Heavy metal concentrations and speciation in riverine sediments and the risks posed in three urban belts in the Haihe Basin. Ecotoxicology and Environmental Safety, 139, 263–271. https://doi.org/10.1016/j.ecoenv.2017.01.047.

    Article  CAS  Google Scholar 

  • Zhang, H., Jiang, Y., Yang, T., Wang, M., Shi, G., & Ding, M. (2016). Heavy metal concentrations and risk assessment of sediments and surface water of the Gan River, China. Polish Journal of Environmental Studies, 25, 1529–1540. https://doi.org/10.15244/pjoes/62100.

    Article  CAS  Google Scholar 

  • Zhu, H. N., Yuan, X. Z., Zeng, G. M., Jiang, M., Liang, J., Zhang, C., Yin, J., Huang, H. J., Liu, Z. F., & Jiang, H. W. (2012). Ecological risk assessment of heavy metals in sediments of Xiawan Port based on modified potential ecological risk index. Trans. Nonferrous Met. Soc. China (English Ed.), 22, 1470–1477. https://doi.org/10.1016/S1003-6326(11)61343-5.

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the College of Agriculture, Shiraz University (Grant No. 96GRD1M271143).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Pourghasemi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirchooli, F., Motevalli, A., Pourghasemi, H.R. et al. How do data-mining models consider arsenic contamination in sediments and variables importance?. Environ Monit Assess 191, 777 (2019). https://doi.org/10.1007/s10661-019-7979-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7979-x

Keywords

Navigation