Skip to main content
Log in

Attribute selection using correlations and principal components for artificial neural networks employment for landslide susceptibility assessment

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Landslide susceptibility maps can be developed with artificial neural networks (ANNs). In order to train our ANNs, a digital elevation model (DEM) and a scar map of one previous event were used. Eleven attributes are generated, possibly containing redundant information. Our base model is formed by, essentially, one input (the DEM), eleven attributes, 30 neurons, and one output (susceptibility). Principal components (PCs) group information in the first projected variables, the last ones can be expendable. In the present paper, four groups of models were trained: one with eleven attributes generated from the DEM; one with 8 out of 11 attributes, in which 3 were eliminated by their high correlation with others; other, with the data projected over its PCs; and another, using 8 out of 11 PCs. The used number of neurons in hidden layer is 30, calibrated based on a complexity analysis that is an in-house developed method. The ANN models trained with the original data generated better statistical results than their counterparts trained with the PC transformed input. Keeping the original 11 attributes calculated provided the best metrics among all models, showing that eliminating attributes also eliminates information used by the model. Using 11 PC transformed attributes hindered trained. However, for the model with eight PCs, training was much faster than its counterpart with little accuracy loss. The metrics and maps achieved were considered acceptable, conveying the power of our model based on ANNs, which uses essentially one input (the DEM) for mapping areas susceptible to mass movements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723.

    Google Scholar 

  • Alcantara-Ayala, I. (2002). Geomorphology, natural hazards, vulnerability and prevention of natural disasters in developing countries. Geomorphology, 47(2-4), 107– 124.

    Google Scholar 

  • Aleotti, P., & Chowdhury, R. (1999). Landslide hazard assessment: summary review and new perspectives. Bulletin of Engineering Geology and the Environment, 58(1), 21– 44.

    Google Scholar 

  • Anbalagan, R. (1992). Landslide hazard evaluation and zonation mapping in mountainous terrain. Engineering Geology, 32(4), 269–277.

    Google Scholar 

  • Ardizzone, F., Cardinali, M., Carrara, A., Guzzetti, F., Reichenbach, P. (2002). Impact of mapping errors on the reliability of landslide hazard maps. Natural Hazards and Earth System Science, 2 (1/2), 3–14.

    Google Scholar 

  • ASF DAAC. (2018). ALOS PALSAR radiometric terrain corrected high res. https://www.asf.alaska.edu. Accessed through ASF DAAC 29 December 2018.

  • Augusto Filho, O., & Magalhaes, F. (2004). Identification of slope instability hazard areas in the Anchieta Imigrantes Highway System, located in the Serra do Mar mountain range, Sao Paulo state, Brazil. Landslides: evaluation and stabilization, (pp. 273–280). London: Balkema, Taylor & Francis Group.

    Google Scholar 

  • Avelar, A.S., Netto, A.L.C., Lacerda, W.A., Becker, L.B., Mendonça, M. B. (2013). Mechanisms of the recent catastrophic landslides in the mountainous range of rio de janeiro, brazil. In Landslide science and practice (pp. 265–270): Springer.

  • Ayalew, L., & Yamagishi, H. (2005). The application of GIS-based, logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology, 65(1-2), 15–31.

    Google Scholar 

  • Barella, C.F., Sobreira, F.G., Zêzere, J. L. (2018). A comparative analysis of statistical landslide susceptibility mapping in the southeast region of minas gerais state, brazil. Bulletin of Engineering Geology and the Environment, 1–17.

  • Benesty, J., Chen, J., Huang, Y., Cohen, I. (2009). Pearson correlation coefficient. In Noise reduction in speech processing (pp. 1–4): Springer.

  • Braun, A., Urquia, E.L.G., Lopez, R.M., Yamagishi, H. (2019). Landslide susceptibility mapping in Tegucigalpa, Honduras, using data mining methods. In IAEG/AEG Annual Meeting Proceedings, San Francisco, California, 2018-Volume 1 (pp. 207–215): Springer.

  • Chen, W., Pourghasemi, H.R., Zhao, Z. (2017). A GIS,-based comparative study of Dempster-Shafer, logistic regression and artificial neural network models for landslide susceptibility mapping. Geocarto international, 32(4), 367–385.

    Google Scholar 

  • Chen, W., Yan, X., Zhao, Z., Hong, H., Bui, D.T., Pradhan, B. (2019). Spatial prediction of landslide susceptibility using data mining-based kernel logistic regression, naive Bayes and RBFNetwork models for the Long County area (China). Bulletin of Engineering Geology and the Environment, 78(1), 247–266.

    Google Scholar 

  • Corominas, J., van Westen, C., Frattini, P., Cascini, L., Malet, J. -P., Fotopoulou, S., Catani, F., Van Den Eeckhaut, M., Mavrouli, O., Agliardi, F., et al. (2014). Recommendations for the quantitative analysis of landslide risk. Bulletin of Engineering Geology and the Environment, 73(2), 209–263.

    Google Scholar 

  • Cruden, D.M. (1991). A simple definition of a landslide. Bulletin of Engineering Geology and the Environment, 43(1), 27–29.

    Google Scholar 

  • Dahal, R.K., Hasegawa, S., Nonomura, A., Yamanaka, M., Masuda, T., Nishino, K. (2008). GIS-based weights-of-evidence modelling of rainfall-induced landslides in small catchments for landslide susceptibility mapping. Environmental Geology, 54(2), 311–324.

    CAS  Google Scholar 

  • DeLong, E.R., DeLong, D.M., Clarke-Pearson, D.L. (1988). Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics, 44(3), 837–845.

    CAS  Google Scholar 

  • Dou, J., Yamagishi, H., Pourghasemi, H.R., Yunus, A.P., Song, X., Xu, Y., Zhu, Z. (2015). An integrated artificial neural network model for the landslide susceptibility assessment of Osado Island, Japan. Natural Hazards, 78(3), 1749–1776.

    Google Scholar 

  • Dou, J., Yamagishi, H., Zhu, Z., Yunus, A.P., Chen, C.W. (2018). TXT-tool 1.081-6.1 a comparative study of the binary logistic regression (BLR) and artificial neural network (ANN) models for GIS-based spatial predicting landslides at a regional scale. In Landslide Dynamics: ISDR-ICL Landslide Interactive Teaching Tools (pp. 139–151): Springer.

  • Dou, J., Yunus, A.P., Bui, D.T., Merghadi, A., Sahana, M., Zhu, Z., Chen, C. -W., Khosravi, K., Yang, Y., Pham, B.T. (2019a). Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan. Science of the Total Environment, 662, 332– 346.

  • Dou, J., Yunus, A.P., Tien Bui, D., Sahana, M., Chen, C. -W., Zhu, Z., Wang, W., Pham, B.T. (2019b). Evaluating GIS-based multiple statistical models and data mining for earthquake and rainfall-induced landslide susceptibility Using the LiDAR DEM. Remote Sensing, 11(6), 638.

  • Ermini, L., Catani, F., Casagli, N. (2005). Artificial neural networks applied to landslide susceptibility assessment. Geomorphology, 66(1-4), 327–343.

    Google Scholar 

  • Fall, M., Azzam, R., Noubactep, C. (2006). A multi-method approach to study the stability of natural slopes and landslide susceptibility mapping. Engineering Geology, 82(4), 241–263.

    Google Scholar 

  • Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E., Savage, W.Z., et al. (2008). Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning. Engineering Geology, 102(3-4), 99–111.

    Google Scholar 

  • Frank, H.T., Gomes, M.E.B., Formoso, M.L.L. (2009). Review of the areal extent and the volume of the Serra Geral Formation, Paraná Basin, South America. Pesquisas em Geociências, 36(1), 49–57.

    Google Scholar 

  • García-Rodríguez, M., & Malpica, J. (2010). Assessment of earthquake-triggered landslide susceptibility in El Salvador based on an artificial neural network model. Natural Hazards and Earth System Sciences, 10(6), 1307–1315.

    Google Scholar 

  • Glade, T., Anderson, M.G., Crozier, M.J. (2006). Landslide hazard and risk. New York: Wiley.

    Google Scholar 

  • Gökceoglu, C., & Aksoy, H. (1996). Landslide susceptibility mapping of the slopes in the residual soils of the Mengen region (Turkey), by deterministic stability analyses and image processing techniques. Engineering Geology, 44(1-4), 147–161.

    Google Scholar 

  • Gomez, H., & Kavzoglu, T. (2005). Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin, Venezuela. Engineering Geology, 78(1-2), 11–27.

    Google Scholar 

  • Gong, Q.-H., Zhang, J.-X., Wang, J. (2018). Application of gis-based back propagation artificial neural networks and logistic regression for shallow landslide susceptibility mapping in South China-take Meijiang River Basin as an example. The Open Civil Engineering Journal, 12(1).

  • Guha-Sapir, D. (2019). EM-DAT: The Emergency Events Database. Université catholique de Louvain (UCL): Brussels. Belgium. www.emdat.be.

  • Guzzetti, F., Carrara, A., Cardinali, M., Reichenbach, P. (1999). Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology, 31(1), 181–216.

    Google Scholar 

  • Hauke, J., & Kossowski, T. (2011). Comparison of values of Pearson’s and Spearman’s correlation coefficients on the same sets of data. Quaestiones Geographicae, 30(2), 87–93.

    Google Scholar 

  • Highland, L., Bobrowsky, P.T., et al. (2008). The landslide handbook: a guide to understanding landslides. US Geological Survey Reston.

  • Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24(6), 417.

    Google Scholar 

  • Huffman, G.J., Bolvin, D.T., Nelkin, E.J., Wolff, D.B., Adler, R.F., Gu, G., Hong, Y., Bowman, K.P., Stocker, E.F. (2007). The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. Journal of hydrometeorology, 8(1), 38–55.

    Google Scholar 

  • Hussin, H.Y., Zumpano, V., Reichenbach, P., Sterlacchini, S., Micu, M., van Westen, C., Bȧlteanu, D. (2016). Different landslide sampling strategies in a grid-based bi-variate statistical susceptibility model. Geomorphology, 253, 508–523.

    Google Scholar 

  • Jolliffe, I. (2011). Principal component analysis. In International encyclopedia of statistical science (1094–1096): Springer.

  • Kawabata, D., & Bandibas, J. (2009). Landslide susceptibility mapping using geological data, a DEM from ASTER, images and an artificial neural network (ANN). Geomorphology, 113(1-2), 97–109.

    Google Scholar 

  • Kumar, D., Rawat, A., et al. (2018). Study and prediction of landslide in Uttarkashi, Uttarakhand, India using GIS and ANN. American Journal of Neural Networks and Applications, 3(6), 63.

    Google Scholar 

  • Lee, S., & Min, K. (2001). Statistical analysis of landslide susceptibility at Yongin, Korea. Environmental Geology, 40(9), 1095–1113.

    Google Scholar 

  • Lee, S., Ryu, J. -H., Won, J. -S., Park, H.-J. (2004). Determination and application of the weights for landslide susceptibility mapping using an artificial neural network. Engineering Geology, 71 (3-4), 289–302.

    Google Scholar 

  • Mandal, S., & Mondal, S. (2019). Artificial neural network (ann) model and landslide susceptibility. In Statistical Approaches for Landslide Susceptibility Assessment and Prediction (pp. 123–133): Springer.

  • Marjanović, M., Bajat, B., Abolmasov, B., Kovačević, M. (2018). Machine learning and landslide assessment in a GIS environment. In GeoComputational Analysis and Modeling of Regional Systems (pp. 191–213): Springer.

  • Michie, D., Spiegelhalter, D.J., Taylor, C., et al. (1994). Machine learning. Neural and Statistical Classification, 13.

  • Oliveira, G., Pedrollo, O.C., Castro, N. (2014). O desempenho das Redes Neurais Artificiais (RNAs), para simulação hidrológica mensal. Revista Brasileira de Recursos Hídricos, 19(2), 251–265.

    Google Scholar 

  • Oliveira, G.G., Pedrollo, O.C., Castro, N.M. (2015). Simplifying artificial neural network models of river basin behaviour by an automated procedure for input variable selection. Engineering Applications of Artificial Intelligence, 40, 47–61.

    Google Scholar 

  • Oliveira, G.G., Guaselli, L.A., Quevedo, R.P., Ruiz, L.F.C., Bressani, L.A., Riffel, E.S. (2018). Identificaç,ao e análise de áreas suscetíveis a fluxos de detritos na bacia hidrográfica do Rio Taquari-Antas, RS. Pesquisas em Geociências (online), 45, 1–25.

    Google Scholar 

  • Petley, D. (2012). Global patterns of loss of life from landslides. Geology, 40(10), 927–930.

    Google Scholar 

  • Pham, B.T., Prakash, I., Dou, J., Singh, S.K., Trinh, P.T., Tran, H.T., Le, T.M., Van Phong, T., Khoi, D.K., Shirzadi, A., et al. (2019). A novel hybrid approach of landslide susceptibility modelling using rotation forest ensemble and different base classifiers. Geocarto International, 1–25.

  • Pradhan, B., & Lee, S. (2010). Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models. Environmental Earth Sciences, 60(5), 1037–1054.

    Google Scholar 

  • Reginato, P.A.R., & Strieder, A.J. (2016). Caracterização estrutural dos aqüíferos fraturados da Formação Serra Geral na região nordeste do estado do Rio Grande do Sul. Revista Brasileira de Geociências, 36(1), 13–22.

    Google Scholar 

  • Regmi, A.D., Devkota, K.C., Yoshida, K., Pradhan, B., Pourghasemi, H.R., Kumamoto, T., Akgun, A. (2014). Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya. Arabian Journal of Geosciences, 7(2), 725–742.

    Google Scholar 

  • Salvati, P., Petrucci, O., Rossi, M., Bianchi, C., Pasqua, A.A., Guzzetti, F. (2018). Gender, age and circumstances analysis of flood and landslide fatalities in Italy. Science of the Total Environment, 610, 867–879.

    Google Scholar 

  • Sari, V., dos Reis Castro, N.M., Pedrollo, O.C. (2017). Estimate of suspended sediment concentration from monitored data of turbidity and water level using artificial neural networks. Water Resources Management, 31(15), 4909–4923.

    Google Scholar 

  • Schuster, R.L., & Fleming, R.W. (1986). Economic losses and fatalities due to landslides. Bulletin of the Association of Engineering Geologists, 23(1), 11–28.

    Google Scholar 

  • Secretaria Estadual do Meio Ambiente & Grupo de Pesquisa em Desastres Naturais. (2017). Diagnóstico preliminar. Technical report, Departamento de Recursos Hídricos da Secretaria Estadual do Meio Ambiente (DRH-SEMA). http://sema.rs.gov.br/upload/arquivos/201701/27174921-diagnostico-preliminar-gtrolante-revfinal-2.pdf http://sema.rs.gov.br/upload/arquivos/201701/27174921-diagnostico-preliminar-gtrolante-revfinal-2.pdf.

  • Sorriso Valvo, M. (2002). Landslides; from inventory to risk. In Landslides Proceedings of the International European Conference on Landslides (pp. 79–93). Balkema: Rotterdam.

  • Sousa, S., Martins, F., Alvim-Ferraz, M., Pereira, M.C. (2007). Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations. Environmental Modelling & Software, 22(1), 97–103.

    Google Scholar 

  • Tien Bui, D., Shirzadi, A., Shahabi, H., Geertsema, M., Omidvar, E., Clague, J.J., Thai Pham, B., Dou, J., Talebpour Asl, D., Bin Ahmad, B., et al. (2019). New ensemble models for shallow landslide susceptibility modeling in a semi-arid watershed. Forests, 10(9), 743.

    Google Scholar 

  • Turner, S., Regelous, M., Kelley, S., Hawkesworth, C., Mantovani, M. (1994). Magmatism and continental break-up in the South Atlantic,: high precision 40Ar-39Ar geochronology. Earth and Planetary Science Letters, 121(3-4), 333–348.

    CAS  Google Scholar 

  • Van Westen, C., Van Asch, T.W., Soeters, R. (2006). Landslide hazard and risk zonation—why is it still so difficult?. Bulletin of Engineering geology and the Environment, 65(2), 167–184.

    Google Scholar 

  • Vogl, T.P., Mangis, J., Rigler, A., Zink, W., Alkon, D. (1988). Accelerating the convergence of the back-propagation method. Biological Cybernetics, 59(4-5), 257–263.

    Google Scholar 

  • White, I. (1908). Report on the coal measures and associated rocks of South Brazil. Rio de Janeiro: Comm. estud. Minas Brazil.

    Google Scholar 

  • Wold, S., Esbensen, K., Geladi, P. (1987). Principal component analysis. Chemometrics and intelligent laboratory systems, 2(1-3), 37–52.

    CAS  Google Scholar 

  • Xiao, T., Yin, K., Yao, T., Liu, S. (2019). Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning models in Wanzhou County, Three Gorges Reservoir, China. Acta Geochimica, 38(5), 654–669.

    CAS  Google Scholar 

  • Yesilnacar, E., & Topal, T. (2005). Landslide susceptibility mapping: a comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Engineering Geology, 79 (3-4), 251–266.

    Google Scholar 

Download references

Funding

This research was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) Edital 01/2017 - ARD, process 17/2551-0000894-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luísa Vieira Lucchese.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lucchese, L.V., de Oliveira, G. & Pedrollo, O.C. Attribute selection using correlations and principal components for artificial neural networks employment for landslide susceptibility assessment. Environ Monit Assess 192, 129 (2020). https://doi.org/10.1007/s10661-019-7968-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7968-0

Keywords

Navigation