Skip to main content

Advertisement

Log in

Measuring forest change patterns from oil and gas land use dynamics in northeastern British Columbia, 1975 to 2017

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Information about forest change patterns from oil and gas (OG) activities could improve our understanding of the land use–land cover change nexus, aid in predicting future forest changes, and prompt the need for more mitigation measures in reducing impacts from the activities. However, little is known about forest change patterns from OG infrastructure development in northeastern British Columbia (BC). In this study, we assess forest change from the impacts of OG infrastructure development using a geospatial approach. The study finds that forest cover was reduced by 0.234% between 1975 and 2017. However, we show that forest cover change (− 0.182%) from OG infrastructure development between 1995 and 2017 was faster compared to that of the two decades before 1995. The faster change, however, coincides with the period of the OG boom in BC. Between time points and locations, we measured a larger amount of forest fragmentation in the land cover for the year and location with larger quantities of human-induced land classes. The differences in the quantity of human-induced land cover types between time points and locations could account for the differences in the amount of fragmentation. Our findings suggest that forest fragmentation is likely to reduce if land managers would make relentless effort to reduce the quantity of anthropogenic-induced land cover classes and increase forest recovery programs in the forest areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abrahams, L. S., Griffin, W. M., & Matthews, H. S. (2015). Assessment of policies to reduce core forest fragmentation from Marcellus shale development in Pennsylvania. Ecological Indicators, 52, 153–160.

    Google Scholar 

  • Adams, C., Janicki, E., Balogun, A. (2016): Summary of shale gas activity in Northeast British Columbia 2013; in Oil and Gas Reports 2016, British Columbia Ministry of Natural Gas Development, pages 1–39.

  • Allred, B. W., Smith, W. K., Twidwell, D., Haggerty, J. H., Running, S. W., Naugle, D. E., & Fuhlendorf, S. D. (2015). Ecosystem services lost to oil and gas in North America. Science, 348(6233), 401–402.

    CAS  Google Scholar 

  • Alphan, H., Doygun, H., & Unlukaplan, Y. I. (2009). Post-classification comparison of land cover using multitemporal Landsat and ASTER imagery: The case of Kahramanmaraş, Turkey. Environmental Monitoring and Assessment, 151(1–4), 327–336.

    Google Scholar 

  • Anderson, J. R. (1976). A land use and land cover classification system for use with remote sensor data. US Government Printing Office.

  • Baihly, J. D., Altman, R. M., Malpani, R., & Luo, F. (2010). Shale gas production decline trend comparison over time and basins. In SPE annual technical conference and exhibition. Society of Petroleum Engineers.

  • Baynard, C. W., Mjachina, K., Richardson, R. D., Schupp, R. W., Lambert, J. D., & Chibilyev, A. A. (2017). Energy development in Colorado’s Pawnee National Grasslands: Mapping and measuring the disturbance footprint of renewables and non-renewables. Environmental Management, 59(6), 995–1016.

    Google Scholar 

  • Bélanger, L., & Grenier, M. (2002). Agriculture intensification and forest fragmentation in the St. Lawrence valley, Québec. Canada. Landscape ecology, 17(6), 495–507.

    Google Scholar 

  • Braun, C. E., Oedekoven, O. O., & Aldridge, C. L. (2002). Oil and gas development in western North America: Effects on sagebrush steppe avifauna with particular emphasis on sage-grouse. In Transactions of the North American Wildlife and Natural Resources Conference (Vol. 67, pp. 337–349).

    Google Scholar 

  • British Columbia Oil and Gas Commission (BCOGC). (2014). Oil and gas land use in Northeast British Columbia. In Oil and gas land use report—2014. Victoria.

  • Canadian Association of Petroleum Producers. (2018). Statistical handbook: Statistical data up to 2018. Calgary: CAPP.

    Google Scholar 

  • Carranza, M. L., Hoyos, L., Frate, L., Acosta, A. T., & Cabido, M. (2015). Measuring forest fragmentation using multitemporal forest cover maps: Forest loss and spatial pattern analysis in the Gran Chaco, Central Argentina. Landscape and Urban Planning, 143, 238–247.

    Google Scholar 

  • Cattarino, L., McAlpine, C. A., & Rhodes, J. R. (2014). Land-use drivers of forest fragmentation vary with spatial scale. Global Ecology and Biogeography, 23(11), 1215–1224.

    Google Scholar 

  • Chaplin-Kramer, R., Sharp, R. P., Mandle, L., Sim, S., Johnson, J., Butnar, I., et al. (2015). Spatial patterns of agricultural expansion determine impacts on biodiversity and carbon storage. Proceedings of the National Academy of Sciences, 112(24), 7402–7407.

    CAS  Google Scholar 

  • Considine, T., Watson, R., Entler, R., & Sparks, J. (2009). An emerging giant: Prospects and economic impacts of developing the Marcellus shale natural gas play. The Pennsylvania State University, Dept. of Energy and Mineral Engineering, August, 5, 39.

  • Croissant, C., & Munroe, D. (2016). Zoning and fragmentation of agricultural and forest land use on residential parcels in Monroe county, Indiana. In Geography Research Forum (Vol. 22, pp. 91–109).

    Google Scholar 

  • Donnelly, S. (2018). Factors influencing the location of gathering pipelines in Utica and Marcellus shale gas development. Journal of Geography, 6(1), 1–10.

    Google Scholar 

  • Donnelly, S., Cobbinah Wilson, I., & Oduro Appiah, J. (2017). Comparing land change from shale gas infrastructure development in neighboring Utica and Marcellus regions, 2006–2015. Journal of Land Use Science, 12(5), 338–350.

    Google Scholar 

  • Dorais, A., & Cardille, J. (2011). Strategies for incorporating high-resolution Google Earth databases to guide and validate classifications: Understanding deforestation in Borneo. Remote Sensing, 3(6), 1157–1176.

    Google Scholar 

  • Drohan, P. J., Brittingham, M., Bishop, J., & Yoder, K. (2012). Early trends in landcover change and forest fragmentation due to shale-gas development in Pennsylvania: A potential outcome for the Northcentral Appalachians. Environmental Management, 49(5), 1061–1075.

    CAS  Google Scholar 

  • Dyer, S. J., O'Neill, J. P., Wasel, S. M., & Boutin, S. (2001). Avoidance of industrial development by woodland caribou. The Journal of Wildlife Management, 531–542.

  • Dyer, S. J., O'neill, J. P., Wasel, S. M., & Boutin, S. (2002). Quantifying barrier effects of roads and seismic lines on movements of female woodland caribou in northeastern Alberta. Canadian Journal of Zoology, 80(5), 839–845.

    Google Scholar 

  • Environmental Systems Research Institute, ESRI. (2016). ArcGIS Desktop 10.5: How Dendrogram works. Available at http://desktop.arcgis.com/en/arcmap/10.5/tools/spatial-analyst-toolbox/how-dendrogram-works.htm. Accessed 7 Dec 2018.

  • Franklin, S. E., Ahmed, O. S., Wulder, M. A., White, J. C., Hermosilla, T., & Coops, N. C. (2015). Large area mapping of annual land cover dynamics using multitemporal change detection and classification of Landsat time series data. Canadian Journal of Remote Sensing, 41(4), 293–314.

    Google Scholar 

  • Goddard, A.D. 2009. Boreal caribou in northeastern British Columbia biological rationale, data summary and literature review. B.C. Ministry of Environment, Fort St. John, B.C. peace region technical report.

  • Hebblewhite, M. (2017). Billion dollar boreal woodland caribou and the biodiversity impacts of the global oil and gas industry. Biological Conservation, 206, 102–111.

    Google Scholar 

  • Johnson, N., Gagnolet, T., Ralls, R., & Stevens, J. (2011). Natural gas pipelines. Excerpt from report 2 of the Pennsylvania Energy Impacts Assessment. Nature.org , 1-9.

  • Johnson, C. J., Ehlers, L. P., & Seip, D. R. (2015). Witnessing extinction—cumulative impacts across landscapes and the future loss of an evolutionarily significant unit of woodland caribou in Canada. Biological Conservation, 186, 176–186.

    Google Scholar 

  • Jordaan, S. M., Keith, D. W., & Stelfox, B. (2009). Quantifying land use of oil sands production: A life cycle perspective. Environmental Research Letters, 4(2), 024004.

    Google Scholar 

  • Klaiber, A. H., Gopalakrishnan, S., & Hasan, S. (2017). Missing the forest for the trees: Balancing shale exploration and conservation goals through policy. Conservation Letters, 10(1), 153-159.

  • Kuemmerle, T., Radeloff, V. C., Perzanowski, K., & Hostert, P. (2006). Cross-border comparison of land cover and landscape pattern in Eastern Europe using a hybrid classification technique. Remote Sensing of Environment, 103(4), 449–464.

    Google Scholar 

  • Langlois, L. A., Drohan, P. J., & Brittingham, M. C. (2017). Linear infrastructure drives habitat conversion and forest fragmentation associated with Marcellus shale gas development in a forested landscape. Journal of Environmental Management, 197, 167–176.

    Google Scholar 

  • Latham, A. D. M., Latham, M. C., Boyce, M. S., & Boutin, S. (2011). Movement responses by wolves to industrial linear features and their effect on woodland caribou in northeastern Alberta. Ecological Applications, 21(8), 2854–2865.

    Google Scholar 

  • Leitão, A. B., Miller, J., Ahern, J., & McGarigal, K. (2012). Measuring landscapes: A planner’s handbook. Island press.

  • Mason, C. F., Muehlenbachs, L. A., & Olmstead, S. M. (2015). The economics of shale gas development. Annual Review of Resource Economics, 7(1), 269–289.

    Google Scholar 

  • McGarigal, K., Cushman, S. and Ene, E. (2012). FRAGSTATS v4: Spatial pattern analysis program for categorical and continuous maps. Computer software program produced by the authors at the University of Massachusetts, Amherst.

  • Moran, M. D., Cox, A. B., Wells, R. L., Benichou, C. C., & McClung, M. R. (2015). Habitat loss and modification due to gas development in the Fayetteville shale. Environmental Management, 55(6), 1276–1284.

    Google Scholar 

  • Moran, M. D., Taylor, N. T., Mullins, T. F., Sardar, S. S., & McClung, M. R. (2017). Land-use and ecosystem services costs of unconventional US oil and gas development. Frontiers in Ecology and the Environment, 15(5), 237–242.

    Google Scholar 

  • Natural Resources Canada. (2017). British Columbia’s Shale and Tight Resources. Available at http://www.nrcan.gc.ca/energy/sources/shale-tight-resources/17692#a5. Accessed 23 Feb 2018.

  • Nellemann, C., & Cameron, R. D. (1998). Cumulative impacts of an evolving oil-field complex on the distribution of calving caribou. Canadian Journal of Zoology, 76(8), 1425–1430.

    Google Scholar 

  • Newman, M. E., McLaren, K. P., & Wilson, B. S. (2014). Assessing deforestation and fragmentation in a tropical moist forest over 68 years; the impact of roads and legal protection in the Cockpit Country, Jamaica. Forest Ecology and Management, 315, 138–152.

    Google Scholar 

  • Oduro Appiah, J., Opio, C., & Donnelly, S. (2019). Quantifying, comparing, and contrasting forest change pattern from shale gas infrastructure development in the British Columbia’s shale gas plays. International Journal of Sustainable Development & World Ecology, 1–15.

  • Olmstead, S. M., Muehlenbachs, L. A., Shih, J. S., Chu, Z., & Krupnick, A. J. (2013). Shale gas development impacts on surface water quality in Pennsylvania. Proceedings of the National Academy of Sciences, 201213871.

  • Pierre, J. P., Young, M. H., Wolaver, B. D., Andrews, J. R., & Breton, C. L. (2017). Time series analysis of energy production and associated landscape fragmentation in the Eagle Ford Shale play. Environmental Management, 60(5), 852–866.

    Google Scholar 

  • Preston, T. M., & Kim, K. (2016). Land cover changes associated with recent energy development in the Williston Basin; northern Great Plains, USA. Science of the Total Environment, 566, 1511–1518.

    Google Scholar 

  • Racicot, A., Babin-Roussel, V., Dauphinais, J. F., Joly, J. S., Noël, P., & Lavoie, C. (2014). A framework to predict the impacts of shale gas infrastructures on the forest fragmentation of an agroforest region. Environmental Management, 53(5), 1023–1033.

    Google Scholar 

  • Rahm, D. (2011). Regulating hydraulic fracturing in shale gas plays: The case of Texas. Energy Policy, 39(5), 2974–2981.

    Google Scholar 

  • Ritchie, C., & George, P. (2012). Boreal caribou habitat restoration. Victoria: Government of British Columbia.

    Google Scholar 

  • Rivard, C., Lavoie, D., Lefebvre, R., Séjourné, S., Lamontagne, C., & Duchesne, M. (2014). An overview of Canadian shale gas production and environmental concerns. International Journal of Coal Geology, 126, 64–76.

    CAS  Google Scholar 

  • Senf, C., Pflugmacher, D., Wulder, M. A., & Hostert, P. (2015). Characterizing spectral–temporal patterns of defoliator and bark beetle disturbances using Landsat time series. Remote Sensing of Environment, 170, 166–177.

    Google Scholar 

  • Soeder, D. J., Sharma, S., Pekney, N., Hopkinson, L., Dilmore, R., Kutchko, B., Stewart, B., Carter, K., Hakala, A., & Capo, R. (2014). An approach for assessing engineering risk from shale gas wells in the United States. International Journal of Coal Geology, 126, 4–19.

    CAS  Google Scholar 

  • Song, X. P., Hansen, M. C., Stehman, S. V., Potapov, P. V., Tyukavina, A., Vermote, E. F., & Townshend, J. R. (2018). Global land change from 1982 to 2016. Nature, 560(7720), 639–643.

    CAS  Google Scholar 

  • Sorensen, T., McLoughlin, P. D., Hervieux, D., Dzus, E., Nolan, J., Wynes, B. O. B., & Boutin, S. (2008). Determining sustainable levels of cumulative effects for boreal caribou. The Journal of Wildlife Management, 72(4), 900–905.

    Google Scholar 

  • Stroppiana, D., Bordogna, G., Carrara, P., Boschetti, M., Boschetti, L., & Brivio, P. A. (2012). A method for extracting burned areas from Landsat TM/ETM+ images by soft aggregation of multiple spectral indices and a region growing algorithm. ISPRS Journal of Photogrammetry and Remote Sensing, 69, 88–102.

    Google Scholar 

  • Trainor, A. M., McDonald, R. I., & Fargione, J. (2016). Energy sprawl is the largest driver of land use change in United States. PLoS One, 11(9), e0162269.

    Google Scholar 

  • Van Rensen, C. K., Nielsen, S. E., White, B., Vinge, T., & Lieffers, V. J. (2015). Natural regeneration of forest vegetation on legacy seismic lines in boreal habitats in Alberta’s oil sands region. Biological Conservation, 184, 127–135.

    Google Scholar 

  • Vidic, R. D., Brantley, S. L., Vandenbossche, J. M., Yoxtheimer, D., & Abad, J. D. (2013). Impact of shale gas development on regional water quality. Science, 340(6134), 1235009.

    CAS  Google Scholar 

  • Vogt, P., Riitters, K. H., Estreguil, C., Kozak, J., Wade, T. G., & Wickham, J. D. (2007). Mapping spatial patterns with morphological image processing. Landscape Ecology, 22(2), 171–177.

    Google Scholar 

  • Wasson, R. J., & Franklin, S. E. (2018). Detection accuracy of new well sites using Landsat time series data: A case study in the Alberta Oil Sands region. Remote Sensing Letters, 9(2), 160–169.

    Google Scholar 

  • Wilbert, M., Thomson, J., & Culver, N. W. (2008). Analysis of habitat fragmentation from oil and gas development and its impact on wildlife. Report: The Wilderness Society.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Oduro Appiah.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oduro Appiah, J., Opio, C. & Donnelly, S. Measuring forest change patterns from oil and gas land use dynamics in northeastern British Columbia, 1975 to 2017. Environ Monit Assess 192, 24 (2020). https://doi.org/10.1007/s10661-019-7958-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7958-2

Keywords

Navigation