Skip to main content
Log in

Potential mobility assessment of metals in salt marsh sediments from San Antonio Bay

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The BCR method was applied on sediments from the salt marsh of San Antonio Bay (SAB). It presents several channels among which the Encerrado is the most important and is impacted by abandoned mining wastes. The pseudototal concentrations of metals measured within this channel were relatively higher than in outer sites, and according to the Igeo index, its contamination level was low. The metal distribution in the different phases of sediment particles showed that the residual component, considered the safest from the environmental point of view, accounted for most of the Fe, Cd, Cu, and Zn contents. Conversely, Pb was mainly in the non-residual component as part of the reducible fraction, thus constituting the main environmental hazard among the studied elements. The predominance of residual and reducible fractions indicated a historic contamination of metal such as Pb, Cu, and Zn from the mining wastes. The low exchangeable and oxidizable fractions would indicate no actual input of metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acosta, J. A., Jansen, B., Kalbitz, K., Faz, A., & Martínez, S. (2011). Salinity increases mobility of heavy metals in soils. Chemosphere, 85, 1318–1324.

    CAS  Google Scholar 

  • Alvarez, M. B., Garrido, M., Lista, A. G., & Fernández Band, B. S. (2008). Three-way multivariate analysis of metal fractionation results from sediment samples obtained by different sequential extraction procedures and ICP-OES. Anal Chim Acta, 620, 34–43.

    CAS  Google Scholar 

  • Alvarez, M. B., Quintas, P. Y., Domini, C. E., Garrido, M., Lista, A. G., & Fernández Band, B. S. (2014). Chemometric approach to visualize and easily interpret data from sequential extraction procedures applied to sediment samples. J Hazard Mater, 274, 455–464.

    CAS  Google Scholar 

  • Bacon, J. R., Farmer, J. G., Dunn, S. M., Graham, M. C., & Vinogradoff, S. I. (2006). Sequential extraction combined with isotope analysis as a tool for the investigation of lead mobilisation in soils: application to organic-rich soils in an upland catchment in Scotland. Environ Pollut, 141(3), 469–481.

    CAS  Google Scholar 

  • Bonuccelli, R., Malán, J., Luna, L., & Torres, L. (2004). Contaminación por metales pesados derivados de la lixiviación de escorias de fundición. San Antonio Oeste. Río Negro. IBMP Serie Publicaciones, 3, 63–66.

    Google Scholar 

  • Boruvka, L., & Vacha, R. (2006). Litavka river alluvium as a model area heavily polluted with potentially risk elements. In J. L. Morel, G. Echevarria, & N. Goncharova (Eds.), Phytoremediation of metal-contaminated soils, vol 68. NATO Science Series IV Earth and Environmental Sciences (pp. 267–298). Netherlands: Springer.

    Google Scholar 

  • Botsou, F., Godelitsas, A., Kaberi, H., Mertzimekis, T. J., Goettlicher, J., Steininger, R., & Scoullos, M. (2015). Distribution and partitioning of major and trace elements in pyrite-bearing sediments of a Mediterranean coastal lagoon. Chemie der Erde, 75, 219–236.

    CAS  Google Scholar 

  • Bro R. (1998). Multi-way analysis in the food industry: Models, algorithms, and applications, in: Ph.D. Thesis, University of Amsterdam, Amsterdam. pp 290.

  • Bro, R. (2006). Review on multiway analysis in chemistry - 2000–2005. Critical Reviews in Analytical Chemistry, 36(3-4), 279–293.

    CAS  Google Scholar 

  • Bro R., Anderson C. A., 2013. N-way Toolbox for MATLAB (TM) (http://www.models.life.ku.dk/nwaytoolbox/download).

  • Carbone, M. E., Melo, W. D., & Piccolo, M. C. (2014). Procesos ambientales que afectan la bahía de San Antonio y su área de adyacencia (Prov. De Río Negro). Huellas, 18 ISSN: 0329-0573 (impresa) / 2362-5643 (en línea).

  • Ceulemans, E., & Kiers, H. K. L. (2006). Selecting among three-mode principal component models of different types and complexities: a numerical convex hull based method. Br J Math Stat Psychol, 56, 133–150.

    Google Scholar 

  • Cuong, D., & Obbard, J. P. (2006). Metal speciation in coastal marine sediments from Singapore using a modified BCR sequential extraction procedure. Appl Geochem, 21, 1335–1346.

    CAS  Google Scholar 

  • Davidson, C. M., Duncan, A. L., Littlejohn, D., Ure, A. M., & Garden, L. M. (1998). A critical evaluation of the threestage BCR sequential extraction procedure to assess the potential mobility and toxicity of heavy metals in industrially-contaminated land. Anal Chim Acta, 363, 45–55.

    CAS  Google Scholar 

  • Dong, Y., Ma, L. Q., & Rhue, R. D. (2000). Relation of enhanced Pb solubility to Fe partitioning in soils. Environ Pollut, 110, 515–522.

    CAS  Google Scholar 

  • Du Laing, G., De Vos, R., Vandecasteele, B., Lesage, E., Tack, F. M. G., & Verloo, M. G. (2008). Effect of salinity on heavy metal mobility and availability in intertidal sediments of the Scheldt estuary. Estuar Coast Shelf Sci, 77, 589–602.

    Google Scholar 

  • Du Laing, G., Rinklebe, J., Vandecasteele, B., Meers, E., & Tack, F. M. G. (2009). Trace metal behaviour in estuarine and riverine floodplain soils and sediments: a review. Sci Total Environ, 407, 3972–3985.

    Google Scholar 

  • Fatela, F., Moreno, J., Moreno, F., Araújo, M. F., Valente, T., Antunes, C., Taborda, R., Andrade, C., & Drago, T. (2009). Environmental constraints of foraminiferal assemblages distribution across a brackish tidal marsh (Caminha, NW Portugal) Mar. Micropaleontol., 70, 70–88.

    Google Scholar 

  • Förstner, U., Lechsber, R. U., Davis, R. A., & L'Hermitte, P. (1985). Chemical methods for assessing bioavailable metals in sludges. In M. Meguellati & D. P. Robbe (Eds.), Marchandise, M. Astruc. Proc. Int. Conf. on Heavy Metals in the Environment, Heidelberg CEP Consultants, Edinburgh (1983) (p. 1090). London: Elsevier.

    Google Scholar 

  • Fucks, E. E., Scalise, A. H., & Schnack, E. J. (2011). Evaluación de alternativas para la conservación y manejo del frente costero en Las Grutas, Río Negro. In Informe Final. Provincia de Rio Negro y Consejo Federal de Inversiones.

    Google Scholar 

  • Gibbons, R. D., & Coleman, D. E. (2001). Statistical methods for detection and quantification of environmental contamination (p. 139). NY: John Willey & Sons.

    Google Scholar 

  • Gil, M. N., Harvey, M., & Esteves, J. L. (1999). Heavy metals in intertidal sediments from Patagonian Coast, Argentina. Bull Environ Cont Toxicol, 63, 52–58.

    CAS  Google Scholar 

  • Gobierno de la provincia de Río Negro. (2013). Plan de Manejo Área Natural Protegida Bahía de San Antonio Río Negro. Pp 308.

  • Guillén, M. T., Delgado, J., Albanese, S., Nieto, J. M., Lima, A., & Vivo, B. D. (2012). Heavy metals fractionation and multivariate statistical techniques to evaluate the environmental risk in soils of Huelva Township (SW Iberian Peninsula). J Geochem Explor, 119–120, 32–43.

    Google Scholar 

  • Hatje, V., Payne, T. E., Hill, D. M., McOrist, G., Birch, G. F., & Szymczak, R. (2003). Kinetics of trace element uptake and release by particles in estuarine waters: effects of pH, salinity, and particle loading. Environ Int, 29, 619–629.

    CAS  Google Scholar 

  • Idaszkin, Y. L., Lancelotti, J. L., Bouza, P. J., & Marcovecchio, J. E. (2015). Accumulation and distribution of trace metals within soils and the austral cordgrass Spartina densiflora in a Patagonian salt marsh. Mar Pollut Bull, 101(1), 457–465.

    CAS  Google Scholar 

  • Isacch, J. P., Costa, C. S. B., Rodríguez-Gallego, L., Conde, D., Escapa, M., Gagliardini, D. A., & Iribarne, O. O. (2006). Distribution of saltmarsh plant communities associated with environmental factors along a latitudinal gradient on the south-west Atlantic coast. J Biogeogr, 33, 888–900.

    Google Scholar 

  • Larner, B. L., Seen, A. J., & Townsend, A. T. (2006). Comparative study of optimized BCR sequential extraction scheme and acid leaching of element in the certified reference material NIST 2711. Anal Chim Acta, 556, 444–449.

    CAS  Google Scholar 

  • Lu, Z. B., & Kang, M. (2017). Risk assessment of toxic metals in marine sediments from the Arctic Ocean using a modified BCR sequential extraction procedure. J Environ Sci Health Part A, 1–16.

  • Ma, X., Zuo, H., Tian, M., Zhang, L., Meng, J., Zhou, X., & Liu, Y. (2016). Assessment of heavy metals contamination in sediments from three adjacent regions of the Yellow River using metal chemical fractions and multivariate analysis techniques. Chemosphere, 144, 264–272.

    CAS  Google Scholar 

  • Marinho, C. H., Giarratano, E., Esteves, J. L., Narvarte, M. A., & Gil, M. N. (2017). Hazardous metal pollution in a protected coastal area from Northern Patagonia (Argentina). Environ Sci Pollut R doi, 24, 6724–6735. https://doi.org/10.1007/s11356-017-8393-y.

    Article  CAS  Google Scholar 

  • Marinho, C. H., Giarratano, E., & Gil, M. N. (2018). Metal biomonitoring in a Patagonian salt marsh. Environ Monit Assess, 190, 598–514. https://doi.org/10.1007/s10661-018-6975-x.

    Article  CAS  Google Scholar 

  • McComb, J., Alexander, T. C., Han, F. X., & Tchounwow, P. B. (2014). Understanding biogeochemical cycling of trace elements and heavy metals in estuarine ecosystems. J Bioremed Biodegr, 5, 1000–1118. https://doi.org/10.4172/2155-6199.1000e148.

    Article  CAS  Google Scholar 

  • Morillo, J., Usero, J., & Gracia, I. (2004). Heavy metal distribution in marine sediments from the southwest coast of Spain. Chemosphere, 55, 431–442.

    CAS  Google Scholar 

  • Neff, J. M. (2002). Cadmium in the Ocean. Bioaccumulation in Marine Organisms, 89–102. https://doi.org/10.1016/b978-008043716-3/50006-3.

    Google Scholar 

  • Pardo, R., Vega, M., Debán, L., Cazurro, C., & Carretero, C. (2008). Modelling of chemincal fractionation patterns of metals in soils by two-way and three-way principal component analysis. Anal Chim Acta, 606, 26–36.

    CAS  Google Scholar 

  • Rauret, G., López Sánchez, J. F., Sahuquillo, A., Rubio, R., Davidson, C., Ure, A., & Quevauviller, P. (1999). Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J Environ Monit, 1, 57–61.

    CAS  Google Scholar 

  • Rule, J. H. (1998). Trace metal cation adsorption in soils: selective chemical extractions and biological availability. In Dabrowski (Ed.), Adsorption and its applications in industry and environmental protection. Studies in surface science and catalysis (Vol. 120, pp. 319–349). Elseiver Science BV.

  • Sahoo, P. K., Equeenuddin, S. M., & Powell, M. A. (2016). Trace elements in soils around coal mines: current scenario, impact and available techniques for management. Curr Pollution Rep, 2, 1–14.

    CAS  Google Scholar 

  • Sheoran, A. S., & Sheoran, V. (2006). Heavy metals removal mechanism of acid mine drainage in wetlands: a critical review. Minerals Engineering, 19, 105–111.

    CAS  Google Scholar 

  • Shiowatana, J., McLaren, R. G., Chanmekha, N., & Samphao, A. (2001). Fractionation of arsenic in soil by a continuousflow sequential extraction method. J Environ Qual, 30, 1940–1949.

    CAS  Google Scholar 

  • Stanimirova, I., Kita, A., Malkowski, E., John, E., & Walczak, B. (2009). N-way exploration of environmental data obtained from sequential extraction procedure. Chemom Intell Lab Syst, 96, 203–209.

    CAS  Google Scholar 

  • Sundaray, S. K., Nayak, B. B., Lin, S., & Bhatta, D. (2011). Geochemical speciation and risk assessment of heavy metals in the river estuarine sediments—a case study: Mahanadi Basin, India. J Hazard Mater, 186, 1837–1846.

    CAS  Google Scholar 

  • Sungur, A., Soylak, M., Yilmaz, S., & Özcan, H. (2014). Determination of heavy metals in sediments of the Ergene River by BCR sequential extraction method. Environ Earth Sci, 72(9), 3293–3305.

    CAS  Google Scholar 

  • Sutherland, R. A. (2002). Comparison between non-residual Al, Co, Cu, Fe, Mn, Ni, Pb and Zn released by a three-step sequential extraction procedure and a dilute hydrochloric acid leach for soil and road deposited sediment. App Geochem, 17, 353–365.

    CAS  Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace elements. Anal Chem, 51, 844–851.

    CAS  Google Scholar 

  • Tokalioglu, S., Kartal, S., & Elci, L. (2000). Determination of heavy metals and their speciation in lake sediments by flame atomic absorption spectrometry after a four-stage sequential extraction procedure. Anal Chim Acta, 413, 33–40.

    CAS  Google Scholar 

  • Tsakovski, S., Kudlak, B., Simeonov, V., Wolska, L., Garcia, G., Dassenakis, M., & Namiesnik, J. (2009). N-way modelling of sediment monitoring data from Mar Menor lagoon, Spain. Talanta, 80, 935–941.

    CAS  Google Scholar 

  • Ure, A. M., Quevauviller, P. H., Muntau, H., & Griepink, B. (1993). Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of Commission of the European Communities. Int J Environ Anal Chem, 51(1-4), 135–151.

    CAS  Google Scholar 

  • Vázquez, N., Gil, M. N., Esteves, J. L., & Narvarte, M. (2007). Monitoring heavy metal pollution in San Antonio Bay, Río Negro, Argentina. Bull Environ Contam Toxicol, 79, 121–125.

    Google Scholar 

  • Wuana, R. A., Okieimen, F. E., & Imborvungu, J. A. (2010). Removal of heavy metals from a contaminated soil using organic chelating acids. Int J Environ Sci Tech, 7(3), 485–496.

    CAS  Google Scholar 

  • Zhao, S., Feng, C., Wang, D., Liu, Y., & Shen, Z. (2013). Salinity increases the mobility of Cd, Cu, Mn, and Pb in the sediments of Yangtze Estuary: relative role of sediments properties and metal speciation. Chemosphere, 91, 977–984.

    CAS  Google Scholar 

Download references

Acknowledgments

This study was partially funded by CONICET, through a doctoral fellowship to the first author, and Secretaria de Ciencia y Técnica of Universidad Nacional de la Patagonia San Juan Bosco (PI 1281 to MG and CM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen H Marinho.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marinho, C.H., Giarratano, E., Domini, C.E. et al. Potential mobility assessment of metals in salt marsh sediments from San Antonio Bay. Environ Monit Assess 191, 723 (2019). https://doi.org/10.1007/s10661-019-7895-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7895-0

Keywords

Navigation