Skip to main content
Log in

Antimony leaching from PET plastic into bottled water in Algerian market

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Twelve different brands of mineral water were collected from the Algerian market and analyzed to determine the initial antimony (Sb) content in both the PET package and mineral water. Experiments were conducted under different time conditions: 1, 10, to 365 days, different temperatures: 6, 25, and 40 °C, and different bottles sizes: 0.33 L and 1.5 L. The Sb in mineral water bottles varies between 0.50 and 1.12 μg/L for 0.33 L bottles, and 0.37 to 0.77 μg/L for 1.5 L ones. All of these values remain below the limit set by the European Union of 5 μg/L in drinking water. The diffusion coefficient of Sb in PET has been experimentally determined at 6, 25, and 40 °C, after the content of Sb in 1.5 L PET bottles had been determined. In the second part of the study, a factorial design 23 enabled a model the migration of antimony (Sb) in the bottled solutions and highlighted the influencing effects, such as temperature (°C), time (h), and thickness (mm) for two different time domains encompassing the entire validity period of the product. A simple polynomial function based on a single parameter has been determined with a precision indicator R2 = 0.98. This model has the advantage of being simple and fast. The Chronic Daily Intake (CDI) of Sb has been calculated, for adults. It does not exceed the Environmental Protection Agency (USEPA) regulated CDI value of 400 ng/kg/day. The CDI values for children increase as the weight of the children decreases. The passage from the maximum child weight to the minimum value in the study increases the CDI of 77%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Al-Otoum, F., Al-Ghouti, M. A., Ozeas Jr., S. C., & Khraisheh, M. (2017). Impact of temperature and storage time on the migration of antimony from polyethylene terephthalate (PET) containers into bottled water in Qatar. Environ MonitAssess, 189, 631.

    Google Scholar 

  • APAB/EDPme, Analyse Filière boissons en Algérie, Euro développement PME Commission Européenne et Ministère de la PME et de l’artisanat du gouvernement Algérien. (2013), 114 p.

  • Chapa-Martínez, C. A., Hinojosa-Reyes, L., Hernández-Ramírez, A., Ruiz-Ruiz, E., Maya-Treviño, L., & Guzmán-Mar, J. L. (2016). An evaluation of the migration of antimony from polyethylene terephthalate (PET) plastic used for bottled drinking water. Science of the Total Environment, 565, 511–518.

    Article  Google Scholar 

  • Clemens, R., Manfred, B., & Peter, F. (2012). Temperature-dependent leaching of chemical elements from mineral water bottle materials. Applied Geochemistry, 27, 1492–1498.

    Article  Google Scholar 

  • Crank, J. (1975). The mathematics of diffusion (2nd ed.pp. 44–68). Oxford: Clarendon.

    Google Scholar 

  • De Jesus, A., Dessuy, M. B., Huber, C. S., Zmozinski, A. V., Duarte, Á. T., Vale, M. G. R., & Andrade, J. B. (2016). Determination of antimony in pet containers by direct analysis of solid samples using graphite furnace atomic absorption spectrometry and leaching studies. Microchemical Journal, 124, 222–227.

    Article  Google Scholar 

  • Fan, Y.-Y., Zheng, J.-L., Ren, J.-H., Luo, J., Cui, X.-Y., & Ma, L. Q. (2014). Effects of storage temperature and duration on release of antimony and bisphenol A from polyethylene terephthalate drinking water bottles of China. Environmental Pollution, 192, 113–120.

    Article  CAS  Google Scholar 

  • Franz, R. (2005). Migration modelling from food-contact plastics into foodstuffs as a new tool for consumer exposure estimation. Food Additives and Contaminants, 22(10), 920–937.

    Article  CAS  Google Scholar 

  • Franz, R., & Welle, F. (2008). Migration measurement and modelling from poly(ethylene terephthalate) (PET) into soft drinks and fruit juices in comparison with food stimulants. Food Additives and Contaminants, 25(8), 1033–1046.

    Article  CAS  Google Scholar 

  • Haldimann, M., Alt, A., Blanc, A., Brunner, K., Sager, F., & Dudler, V. (2013). Migration of antimony from PET trays into food simulant and food: determination of Arrhenius parameters and comparison of predicted and measured migration data. Food Additives and Contaminants, 30(8), 587–598.

    Article  CAS  Google Scholar 

  • Hazzab, A. (2011). Eaux minérales naturelles et eaux de source en Algérie, C. R. Géoscience, 343, 20–31.

    Article  CAS  Google Scholar 

  • Hureiki, L., & Mouneimne, Y. (2012). Antimony release in PET bottled natural water in Lebanon. Water Sci. Technol. Water Supply, 12, 193–199.

    Article  CAS  Google Scholar 

  • IARC. (1989). Monographs on the evaluation of carcinogenic risk to humans: Some organic solvents, resin monomers and related compounds, pigments and occupational exposures in paint manufacture and painting, International Agency for Research on Cancer. France: Lyon.

    Google Scholar 

  • Kavcar, P., Sofuoglu, A., & Sofuoglu, S. C. (2009). A health risk assessment for exposure to trace metals via drinking water ingestion pathway. International Journal of Hygiene and Environmental Health, 212, 216e227.

    Article  Google Scholar 

  • Keresztes, S., Tatar, E., Mihucz, V. G., Virag, I., Majdik, C., & Zaray, G. (2009). Leaching of antimony from polyethylene terephthalate (PET) bottles into mineral water. Science of the Total Environment, 407, 4731–4735.

    Article  CAS  Google Scholar 

  • Konkol, L. (2004). Contaminants levels in recycled PET plastic. Victoria (Australia): Swinburne University of Technology.

    Google Scholar 

  • Mihyun J.O., Taeyuel, K., Sirim Choi, Jongpil Jung, Hee-il Song, Hyunjin Lee, Gyoungsu Park, Jogyo O.H., & Jai-young Lee.(2018).International Journal of Environmental Pollution and Remediation (IJEPR) Volume 6.

  • Mortula, M., & Aqeel, A. (2013). Leaching of antimony from bottle water. International Conference on Advances in Civil. Zurich: Structural and Environmental Engineering – ACSEE.

    Google Scholar 

  • Payán, L., Poyatos, M. T., Muñoz, L., LaRubia, M. D., Pacheco, R., & Ramos, N. (2017). Survey of the influence of storage conditions on the quality and migration levels of antimony in polyethylene terephthalate-bottled water. Food Science and Technology International, 23(4), 318–327.

    Article  Google Scholar 

  • Piringer, O. G., & Baner, A. L. (2008). Plastic packaging: interactions with food and pharmaceuticals (2nd ed.pp. 195–230). Weinheim: Wiley-VCH Verlag GmbH.

    Book  Google Scholar 

  • Rungchang, S., Numthuam, S., Qiu, X., Li, Y., & Satake, T. (2013). Diffusion coefficient of antimony leaching from polyethylene terephthalate bottles into beverages. Journal of Food Engineering, 115, 322–329.

    Article  CAS  Google Scholar 

  • Saowaluk, R., Sontahaya, N., Xiaoli, Q., Yanjie, L., & Takaaki, S. (2012). Diffusion coefficient of antimony leaching from polyethylene terephthalate bottles into beverages. Journal of Food Engineering, 115(2013), 322–329.

    Google Scholar 

  • Sax, L. (2010). Polyethylene terephthalate may yield endocrine disruptors. Environmental Health Perspectives, 118, 445–448.

    Article  CAS  Google Scholar 

  • Shotyk, W., & Krachler, M. (2007). Contamination of bottled water with antimony leaching from PET increases upon storage. Environmental Science & Technology, 41(5), 1560–1563.

    Article  CAS  Google Scholar 

  • Shotyk, W., Krachler, M., & Chen, B. (2006). Contamination of Canadian and European bottled waters with antimony from PET containers. Journal of Environmental Monitoring JEM, 8, 288–292.

    Article  CAS  Google Scholar 

  • Stanley, R.S., &Karo, W. (1974). Polymer synthesis, volume I, Academic press New York and London, pp 66-72.

  • Takur, A., Sharp, L., Stern, B., Tizaoui, C., & Benkreira, H. (2012). PET bottle use patterns and antimony migration into bottled water and soft drinks: the case of British and Nigerian bottles. Journal of Environmental Monitoring, 14, 1237–1247.

    Article  Google Scholar 

  • Tinsson, W. (2010). Plans d’expérience: constructions et analyses statistiques (Vol. 67): Springer Science & Business Media.

  • USEPA, (2012). Drinking water standards and health advisories. EPA 822-S-12-001. US Environmental Protection Agency, Has beenhington, DC.

  • Welle, F., & Franz, R. (2011). Migration of antimony from PET bottles into beverages: determination of the activation energy of diffusion and migration modeling compared with literature data. Food Additives and Contaminants, 28, 115–126.

    Article  CAS  Google Scholar 

  • Westerhoff, P., Prapaipong, P., Shock, E., & Hillaireau, A. (2008). Antimony leaching from polyethylene terephthalate (PET) plastic used for bottled drinking water. Water Research, 42(3), 551–556.

    Article  CAS  Google Scholar 

  • Yunlong, X. (2011). Determination of antimony in water, beverages and fruits. PhD thesis. University of Alberta, Canada.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Zmit.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zmit, B., Belhaneche-Bensemra, N. Antimony leaching from PET plastic into bottled water in Algerian market. Environ Monit Assess 191, 749 (2019). https://doi.org/10.1007/s10661-019-7891-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7891-4

Keywords

Navigation