Skip to main content

Advertisement

Log in

Crop landscapes reduced taxonomic and functional richness but increased evenness of aquatic macroinvertebrates in subtropical rivers

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Human activities altering ecosystems structure and function worldwide strongly affect rivers. We studied aquatic macroinvertebrate communities (taxonomic and functional diversity) from rivers immersed in a forest matrix and rivers flowing through croplands. As rivers of the region experience a monsoon climate, high and low water seasons were also considered and their effect tested. We expected lower taxonomic and functional diversity in rivers flowing through croplands, and also during high water periods. We selected five Piedmont forest and three sugarcane crop rivers in Austral Yungas piedmont forests (Argentina), where marginal vegetation, land use, and hydromorphological variables were studied. Samplings were performed in these 8 sites during high and low water seasons of three consecutive years, totaling 32 samples. We analyzed differences between categories through nonparametric analyses of variance and SIMPER analysis. We studied taxonomic diversity through effective number of species and functional diversity using feeding groups with a factorial ANOVA. We calculated different biotic indices to test differences in water quality. We identified 11,034 specimens from 58 families of aquatic macroinvertebrates. Piedmont forest rivers showed higher richness (order 0) than crop rivers, but diversities of orders 1 and 2 showed the opposite pattern. Functional feeding groups were different between both situations. Season greatly influenced the assemblages, with reduced diversity and abundances during high water periods. Biotic indices showed good water quality, except during high water season for crop sites. A complex response of aquatic communities was found, but generally crop sites were more markedly affected during high water season.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson, M. J., & Walsh, D. C. I. (2013). PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing? Ecological Monographs, 83(4), 557–574.

    Article  Google Scholar 

  • Armitage, P. D., Moss, D., Wright, J. F., & Furse, M. T. (1983). The performance of a new biological water quality score system based on macroinvertebrates over a wide range of unpolluted running water sites. Water Research, 17(3), 333–347.

    Article  CAS  Google Scholar 

  • Basset, Y., Cizek, L., Cuénoud, P., Didham, R. K., Guilhaumon, F., Missa, O., Novotny, V., Ødegaard, F., Roslin, T., Schmidl, J., Tishechkin, A. K., Winchester, N. N., Roubik, D. W., Aberlenc, H. P., Bail, J., Barrios, H., Bridle, J. R., Castaño-Meneses, G., Corbara, B., Curletti, G., Duarte da Rocha, W., de Bakker, D., Delabie, J. H., Dejean, A., Fagan, L. L., Floren, A., Kitching, R. L., Medianero, E., Miller, S. E., Gama de Oliveira, E., Orivel, J., Pollet, M., Rapp, M., Ribeiro, S. P., Roisin, Y., Schmidt, J. B., Sørensen, L., & Leponce, M. (2012). Arthropod diversity in a tropical forest. Science, 338(6113), 1481–1483.

    Article  CAS  Google Scholar 

  • Bêche, L. A., Mcelravy, P. E., & Resh, V. H. (2006). Long-term variation in the biological traits of benthic-macroinvertebrates in two Mediterranean-climate streams in California, U. S. A. Freshwater Biology, 51, 56–75.

    Article  Google Scholar 

  • Brown, A. D., Grau, H. R., Malizia, L., & Grau, A. (2001). Argentina. In M. Kappelle & A. D. Brown (Eds.), Bosques nublados del Neotrópico (pp. 623–659). Santo Domingo de Heredia: Inbio.

    Google Scholar 

  • Carpenter, S. R., Stanley, E. H., & Van Der Zanden, M. J. (2011). State of the world´s freshwater ecosystems: physical, chemical, and biological changes. Annual Review of Environment and Resources, 36, 75–79.

    Article  Google Scholar 

  • Clarke, K. R. (1993). Non – parametric multivariate analysis of changes in community structure. Australian Journal of Ecology, 18, 117–143.

    Article  Google Scholar 

  • Cultid-Medina, C. A., & Escobar, F. (2016). Assessing the ecological response of Dung Beetles in an agricultural landscape using number of individuals and biomass in diversity measures. Environmental Entomology, 45, 310–319.

    Article  CAS  Google Scholar 

  • Cummins, K. W., Merritt, R. W., & Andrade, P. C. N. (2005). The use of invertebrate functional groups to characterize ecosystem attributes in selected streams and rivers in south Brazil. Studies on Neotropical Fauna and Environment, 40(1), 69–89.

    Article  Google Scholar 

  • Dobson, M., Magana, A., Mathooko, J. M., & Ndegwa, F. K. (2002). Detritivores in Kenyan Highland streams: more evidence for the paucity of shredders in the tropics? Freshwater Biology, 47, 909–919.

    Article  Google Scholar 

  • Dolédec, S., Chessel, D., Ter Braak, C. J. F., & Champely, S. (1996). Matching species traits to environmental variables: a new three-table ordination method. Environmental and Ecological Statistics, 3, 143–166.

    Article  Google Scholar 

  • Domínguez, E., & Fernández, H. R. (1998). Calidad de los ríos de la cuenca del Salí (Tucumán, Argentina) medida por un índice biótico (12th ed.). Tucumán: Talleres Gráficos de Fundación Miguel Lillo, Serie Conservación de la Naturaleza.

    Google Scholar 

  • Domínguez, E., Molineri, C., Pescador, M.L., Hubbard, M.D. and, Nieto, C. (2006). Ephemeroptera de América del sur. In: Adis, J., Arias, J.R., Rueda-Delgado, G. and Wantzen, K.M. (Eds.), Aquatic Biodiversity in Latin America (ABLA). 2. Moscow: Pensoft Publishers.

  • Domínguez, E., & Fernández, H. R. (2009). Macroinvertebrados bentónicos sudamericanos. Sistemática y biología. Tucumán: Fundación Miguel Lillo.

    Google Scholar 

  • Dos Santos, D. A., Molineri, C., Reynaga, M. C., & Basualdo, C. (2011). Which index is the best to assess stream health? Ecological Indicators, 11, 582–589.

    Article  Google Scholar 

  • Dudgeon, D. (2000). The ecology of tropical Asian rivers and streams in relation to biodiversity conservation. Annual Review of Ecology, Evolution, and Systematics, 31, 239–263.

    Article  Google Scholar 

  • Dudgeon, D. (2011). Tropical stream ecology. London: Academic Press. Elsevier Science.

    Google Scholar 

  • Fernández, R. D., Ceballos, S. J., González Achem, A. L., Hidalgo, M. D. V., & Fernández, H. R. (2016). Quality and conservation of riparian forest in a mountain subtropical basin of Argentina. International Journal of Ecology. https://doi.org/10.1155/2016/4842165.

  • Foley, J. A., Defries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. S., Coe, M. T., Daily, G. C., Gibbs, H. K., Helkowski, J. H., Holloway, T., Howard, E. A., Kucharik, C. J., Monfreda, C., Patz, J. A., Prentice, I. C., Ramankutty, N., & Snyder, P. K. (2005). Global consequences of land use. Science, 309(5734), 570–574.

    Article  CAS  Google Scholar 

  • Fossati, O., Dumas, P., Archaimbault, V., Rocabado, G., Fernández, H., Wasson, J. G., et al. (2003). Deriving life traits from habitat characteristics: an initial application for Neotropical invertebrates. Journal de Recherche Oceanographique, 28, 158–162.

    Google Scholar 

  • García, A. K., Fernández, H. R., Rolandi, M. L., Gultemirian, L., Sánchez, N., Pla, L., et al. (2017). Effect of diffuse Pollution on Water Quality in Mountain Forest Streams. Forestry Research and Engineering: International Journal, 1(1), 1–7.

    Google Scholar 

  • Grashof-Bokdam, C. J., & van Langevelde, F. (2004). Green veining: landscape determinants of biodiversity in European agricultural landscapes. Landscape Ecology, 20, 417–439.

    Article  Google Scholar 

  • Heink, U., & Kowarik, I. (2010). What criteria should be used to select biodiversity indicators? Biodiversity and Conservation, 19, 3769–3797.

    Article  Google Scholar 

  • Hsieh, T.C., Ma, K.H., and Chao, A. (2016). iNext: interpolation and extrapolation for species diversity. R package version 2.0.12.

  • Isa Miranda, A. V., & Rueda Martín, P. A. (2014). El Orden Trichoptera en Tucumán, Argentina: nuevo registro de Leucotrichia lerma (Angrisano and Burgos, 2002) (Trichoptera: Hydroptilidae), descripción de sus estados inmaduros, lista de especies y claves de identificación ilustradas. Acta Zoológica Lilloana, 58, 194–223.

    Google Scholar 

  • Jost, L. (2006). Entropy and diversity. Oikos, 113(2), 363–375.

    Article  Google Scholar 

  • Klemm, D.J., Lewis, P.A., Fulk, F., and Lazorchak, J.M. (1990). Macroinvertebrate field and laboratory methods for evaluating the biological integrity of surface waters. EPA/600/4-90/030. U. S. Environmental Protection Agency. Environmental Monitoring. Systems Laboratory, Cincinnati, Ohio, Washington D. C.

  • Macgregor-Fors, I., & Payton, M. E. (2013). Contrasting diversity values: statistical inferences based on overlapping confidence intervals. PLoS One, 8, e56794. https://doi.org/10.1371/journal.pone0056794.

    Article  CAS  Google Scholar 

  • Mcardle, B. H., & Anderson, M. J. (2001). Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology, 82, 290–297.

    Article  Google Scholar 

  • Menezes, S., Baird, D. J., & Soares, A. M. (2010). Beyond taxonomy: a review of macroinvertebrate trait-based community descriptors as tools for freshwater biomonitoring. Journal of Applied Ecology, 47(4), 711–719.

    Article  Google Scholar 

  • Mesa, L. M. (2014). Influence of riparian quality on macroinvertebrate assemblages in subtropical mountain streams. Journal of Natural History, 48, 1153–1167.

    Article  Google Scholar 

  • Molina, C. I., Gibon, F. M., Duprey, J. L., Domínguez, E., Guimarães, J. R. D., & Roulet, M. (2010). Transfer of mercury and methylmercury along macroinvertebrate food chains in a floodplain lake of the Beni River, Bolivian Amazonia. Science of the Total Environment, 408, 3382–3391.

    Article  CAS  Google Scholar 

  • Molineri, C., Romero, F., & Fernández, H. R. (2009). Diversidad y Conservación de invertebrados acuáticos. In A. D. Brown, P. G. Blendinger, T. Lomáscolo, & P. García Bes (Eds.), Selva Pedemontana de la Yungas. Historia natural, ecología y manejo de un ecosistema en peligro (pp. 121–148). Ediciones del Subtrópico: Tucumán, Argentina.

    Google Scholar 

  • Molineri, C. (2010a). Las especies de Leptohyphidae (Ephemeroptera) de las Yungas de Argentina y Bolivia: diagnosis, distribución y claves. Revista de la Sociedad Entomológica Argentina, 69(3-4), 233–252.

    Google Scholar 

  • Molineri, C. (2010b). The influence of floods on the life history of dominant mayflies (Ephemeroptera) in a subtropical mountain stream. Studies on Neotropical Fauna and Environment, 45(3), 149–157.

    Article  Google Scholar 

  • Naiman, R. J., Decamps, H., & Mcclain, M. E. (2006). Riparia: ecology, conservation, and management of streamside communities. Bioscience, 56(4), 353–354.

    Article  Google Scholar 

  • Oksanen, J., Guillaume Blanchet, F., Friendly, M., Kindt, R., Legendre, P., Mcglinn, D., et al. (2017). Community Ecology Package. Package “Vegan”. Version, 2, 4–1.

    Google Scholar 

  • Príncipe, R. E., Raffaini, G. B., Gualdoni, C. M., Oberto, A. M., & Corigliano, M. C. (2007). Do hydraulic units define macroinvertebrate assemblages in mountain streams of central Argentina? Limnologica, 37, 323–336.

    Article  CAS  Google Scholar 

  • Príncipe R. E., Márquez J. A., Martina L. C., Jobbágy E. G., Albariño R. J. 2015. Pine afforestation changes more strongly community structure than ecosystem functioning in grassland mountain streams. Ecol Indic 57, 366–375.

  • Quinn, G., and Keough, M. (2002). Experimental design and data analysis for biologists. Cambridge University Press.

  • Development Core Team, R. (2017). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical computing.

    Google Scholar 

  • Resh, V. H., Hildrew, G. A., Statzner, B., & Towsend, C. R. (1994). Theoretical habitat templets, species traits, and species richness: a synthesis of long-term research on the Upper Rhône River in the context of concurrently developed ecological theory. Freshwater Biology, 31, 539–554.

    Article  Google Scholar 

  • Reynaga, M. C., & Dos Santos, D. A. (2012). Rasgos biológicos de macroinvertebrados de ríos subtropicales: patrones de variación a lo largo de gradientes ambientales espacio-temporales. Ecología Austral, 22, 112–120.

    Google Scholar 

  • Reynaga, M. C., & Rueda Martin, P. A. (2010). Trophic analysis of two species of Atopsyche (Trichoptera: Hydrobiosidae). Limnologica, 40, 61–66.

    Article  Google Scholar 

  • Romero, F., Fernández, H. R., Molineri, C., & Domínguez, E. (2010). Ecología de ríos y arroyos de la Sierra de San Javier. In R. Grau (Ed.), Ecología regional de una interfase natural – urbana. La Sierra de San Javier y el Gran San Miguel de Tucumán (pp. 77–92). Tucumán: Editorial de la Universidad Nacional de Tucumán.

    Google Scholar 

  • Romero, F., Manzo, V., Fernández, H. R., Domínguez, E., Molineri, C., Nieto, C., et al. (2011). Estudio integral de la cuenca del río Lules: aspectos biológicos. In H. Barber & H. R. Fernández (Eds.), La cuenca del río Lules (pp. 111–136). Tucumán: EDUNT.

    Google Scholar 

  • von Ellenrieder, N. (2007). Composition and structure of aquatic insect assemblages of Yungas mountain cloud forest streams in NW Argentina. Revista de la Sociedad Entomológica Argentina, 66(3-4), 57–76.

    Google Scholar 

  • von Ellenrieder, N., and Garrison, R.W. (2007). Dragonflies and Damselflies (Insecta: Odonata) of the Argentine Yungas: species, composition and identification. Scientific Reports no. 7. Italy: Societa Zoologica ‘La Torbiera’.

  • Walley, W. J., & Hawkes, H. A. (1997). A computer-based reappraisal of the Biological Monitoring Working Party scores using data from the 1990 River Quality Survey of England and Wales. Water Research, 31(2), 201–210.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to our colleagues that helped with field and laboratory work at INECOA (L. Rivera, R. Ruggera, A. Benavídez, P. Puechagut, M. Morales, Y. Tejerina, and E. Ruiz de Los Llanos) and IBN (J. Rodríguez, G. Hankel, C. Cultid-Medina, D. Dos Santos, V. Manzo, C. Reynaga, C. Nieto, and F. Romero). Funding from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) is greatly thanked (PUE099 and PIP845).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gomez Daniela.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daniela, G., Carlos, M. Crop landscapes reduced taxonomic and functional richness but increased evenness of aquatic macroinvertebrates in subtropical rivers. Environ Monit Assess 191, 702 (2019). https://doi.org/10.1007/s10661-019-7864-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7864-7

Keywords

Navigation