Skip to main content
Log in

Effect of algae acclimation to the wastewater medium on the growth kinetics and nutrient removal capacity

Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Algal treatment methods have been widely used in nutrient removal studies. However, in most cases, the experimental conditions have not been fully complied with actual conditions. For instance, the effect of algae acclimation to wastewater medium on cell growth and removal efficiency has generally been ignored in laboratory scale experiments. This paper investigates the effect of acclimation on cell growth and nutrient uptake rates of Arthrospira platensis and Chlorella vulgaris. For this purpose, batch reactors, which contained the synthetic secondary effluent, had been inoculated by acclimated algae cells and the growth parameters were measured daily, as well as nutrient concentration. A significant decrease (P < 0.05) in chlorophyll-a content of acclimated A. platensis was observed, although there was no significant change in specific growth rate (μ) and doubling time (dt), in comparison with the non-acclimated ones. Moreover, the acclimation process changed the chlorophyll-a content and kinetic parameters of Chlorella vulgaris. Furthermore, t test results showed a significant increase in removal rate of nitrogen compounds through the acclimation. Residence time of A. platensis and C. vulgaris was also reduced through the acclimation by approximately 50% and 25%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Aslan, S., & Kapdan, I. K. (2006). Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecological Engineering, 28(1), 64–70.

    Article  Google Scholar 

  • Azov, Y., & Shelef, G. (1987). The effect of pH on the performance of high-rate oxidation ponds. Water Science and Technology, 19(12), 381–383.

    Article  CAS  Google Scholar 

  • Boelee, N. C., Temmink, H., Janssen, M., Buisman, C. J. N., & Wijffels, R. H. (2011). Nitrogen and phosphorus removal from municipal wastewater effluent using microalgal biofilms. Water Research, 45(18), 5925–5933.

    Article  CAS  Google Scholar 

  • Butler, E., Hung, Y.-T., Al Ahmad, M. S., Yeh, R. Y.-L., Liu, R. L.-H., & Fu, Y.-P. (2017). Oxidation pond for municipal wastewater treatment. Applied Water Science, 7(1), 31–51. https://doi.org/10.1007/s13201-015-0285-z.

    Article  CAS  Google Scholar 

  • Carvalho, J. C. M., Francisco, F. R., Almeida, K. A., Sato, S., & Converti, A. (2004). Cultivation of Arthrospira (Spirulina) platensis (Cyanophyceae) by fed-batch addition of ammonium chloride at exponentially increasing feeding rates. Journal of Phycology, 40(3), 589–597.

    Article  CAS  Google Scholar 

  • Chevalier, P., Proulx, D., Lessard, P., Vincent, W. F., & la Noüe, J. (2000). Nitrogen and phosphorus removal by high latitude mat-forming cyanobacteria for potential use in tertiary wastewater treatment. Journal of Applied Phycology, 12(2), 105–112.

    Article  CAS  Google Scholar 

  • Darley, W. M. (1982). Algal biology: a physiological approach (Vol. 168). Oxford: Blackwell Scientific Publications.

    Google Scholar 

  • Fogg, G. E., & Thake, B. (1987). Algal Cultures and Phytoplankton Ecology (3rd ed.). Madison, Wis: University of Wisconsin Press. 

  • González-Fernández, C., Mahdy, A., Ballesteros, I., & Ballesteros, M. (2016). Impact of temperature and photoperiod on anaerobic biodegradability of microalgae grown in urban wastewater. International Biodeterioration & Biodegradation, 106, 16–23.

    Article  Google Scholar 

  • Hallenbeck, P. C., Leite, G. B., & Abdelaziz, A. E. M. (2014). Exploring the diversity of microalgal physiology for applications in wastewater treatment and biofuel production. Algal Research, 6, 111–118.

    Article  Google Scholar 

  • Holmes-Farley, R. (2003). Chemistry And The Aquarium: Metals In Limewater. Advanced Aquarist, 2(5). 

  • Hulatt, C. J., & Thomas, D. N. (2011). Productivity, carbon dioxide uptake and net energy return of microalgal bubble column photobioreactors. Bioresource Technology, 102(10), 5775–5787.

    Article  CAS  Google Scholar 

  • Jiang, L., Pei, H., Hu, W., Hou, Q., Han, F., & Nie, C. (2016). Biomass production and nutrient assimilation by a novel microalga, Monoraphidium spp. SDEC-17 , cultivated in a high-ammonia wastewater. Energy Conversion and Management, 123, 423–430. https://doi.org/10.1016/j.enconman.2016.06.060.

    Article  CAS  Google Scholar 

  • Kamilya, D., Sarkar, S., Maiti, T. K., Bandyopadhyay, S., & Mal, B. C. (2006). Growth and nutrient removal rates of Spirulina platensis and Nostoc muscorum in fish culture effluent: a laboratory-scale study. Aquaculture Research, 37(15), 1594–1597.

    Article  Google Scholar 

  • Kesaano, M., & Sims, R. C. (2014). Algal biofilm based technology for wastewater treatment. Algal Research, 5, 231–240.

    Article  Google Scholar 

  • Khatoon, H., Rahman, N. A., Banerjee, S., Harun, N., Suleiman, S. S., Zakaria, N. H., … Endut, A. (2014). Effects of different salinities and pH on the growth and proximate composition of Nannochloropsis sp. and Tetraselmis sp. isolated from South China Sea cultured under control and natural condition. International Biodeterioration & Biodegradation, 95, 11–18.

  • Lananan, F., Yunos, F. H. M., Nasir, N. M., Bakar, N. S. A., Lam, S. S., & Jusoh, A. (2016). Optimization of biomass harvesting of microalgae, Chlorella sp. utilizing auto-flocculating microalgae, Ankistrodesmus sp. as bio-flocculant. International Biodeterioration & Biodegradation, 113, 391–396.

    Article  Google Scholar 

  • Larsdotter, K. (2006). Wastewater treatment with microalgae-a literature review. Vatten, 62(1), 31.

    CAS  Google Scholar 

  • Lau, P. S., Tam, N. F. Y., & Wong, Y. S. (1996). Wastewater nutrients removal by Chlorella vulgaris: optimization through acclimation. Environmental Technology, 17(2), 183–189.

    Article  CAS  Google Scholar 

  • Markou, G., & Georgakakis, D. (2011). Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: a review. Applied Energy, 88(10), 3389–3401.

    Article  CAS  Google Scholar 

  • Martinez, M. E., Sánchez, S., Jimenez, J. M., El Yousfi, F., & Munoz, L. (2000). Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresource Technology, 73(3), 263–272.

    Article  CAS  Google Scholar 

  • de Mazancourt, C., & Schwartz, M. W. (2012). Starve a competitor: evolution of luxury consumption as a competitive strategy. Theoretical Ecology, 5(1), 37–49.

    Article  Google Scholar 

  • McGriff, E. C., & McKinney, R. E. (1972). The removal of nutrients and organics by activated algae. Water Research, 6(10), 1155–1164.

    Article  CAS  Google Scholar 

  • Perazzoli, S., Bruchez, B. M., Michelon, W., Steinmetz, R. L. R., Mezzari, M. P., Nunes, E. O., & da Silva, M. L. B. (2016). Optimizing biomethane production from anaerobic degradation of Scenedesmus spp. biomass harvested from algae-based swine digestate treatment. International Biodeterioration & Biodegradation, 109, 23–28.

    Article  CAS  Google Scholar 

  • Powell, N., Shilton, A. N., Pratt, S., & Chisti, Y. (2008). Factors influencing luxury uptake of phosphorus by microalgae in waste stabilization ponds. Environmental Science & Technology, 42(16), 5958–5962.

    Article  CAS  Google Scholar 

  • Powell, N., Shilton, A., Chisti, Y., & Pratt, S. (2009). Towards a luxury uptake process via microalgae-defining the polyphosphate dynamics. Water Research, 43(17), 4207–4213.

    Article  CAS  Google Scholar 

  • Rodrigues, M. S., Ferreira, L. S., Converti, A., Sato, S., & Carvalho, J. C. M. (2010). Fed-batch cultivation of Arthrospira (Spirulina) platensis: potassium nitrate and ammonium chloride as simultaneous nitrogen sources. Bioresource Technology, 101(12), 4491–4498.

    Article  CAS  Google Scholar 

  • Sankar, V., Daniel, D. K., & Krastanov, A. (2011). Carbon dioxide fixation by Chlorella minutissima batch cultures in a stirred tank bioreactor. Biotechnology & Biotechnological Equipment, 25(3), 2468–2476.

    Article  CAS  Google Scholar 

  • Soletto, D., Binaghi, L., Lodi, A., Carvalho, J. C. M., & Converti, A. (2005). Batch and fed-batch cultivations of Spirulina platensis using ammonium sulphate and urea as nitrogen sources. Aquaculture, 243(1), 217–224.

    Article  CAS  Google Scholar 

  • Sommer, U. (1984). The paradox of the plankton: fluctuations of phosphorus availability maintain diversity of phytoplankton in flow-through cultures. Limnology and Oceanography, 29(3), 633–636.

    Article  Google Scholar 

  • Stevenson, R. J., & Stoermer, E. F. (1982). Luxury consumption of phosphorus by five Cladophora epiphytes in Lake Huron. Transactions of the American Microscopical Society, 101(2), 151–161.

    Article  CAS  Google Scholar 

  • Sun, X., Wang, C., Li, Z., Wang, W., Tong, Y., & Wei, J. (2013). Bioresource technology microalgal cultivation in wastewater from the fermentation effluent in Riboflavin (B2) manufacturing for biodiesel production. Bioresource Technology, 143, 499–504. https://doi.org/10.1016/j.biortech.2013.06.044.

    Article  CAS  Google Scholar 

  • Tchobanoglous, G., & Burton, F. L. (1991). Wastewater engineering. Management, 7, 1–4.

    Google Scholar 

  • Topinka, J. A., & Robbins, J. V. (1976). Effects of nitrate and ammonium enrichment on growth and nitrogen physiology in Fucus spiralis. Limnology and Oceanography, 21(5), 659–664.

    Article  CAS  Google Scholar 

  • UTEX. (2015). Culture collection of algae at the University of Texas at Austin. https://doi.org/http://www.utex.org/. Accessed 2015

  • Vandamme, D., Foubert, I., Fraeye, I., Meesschaert, B., & Muylaert, K. (2012). Flocculation of Chlorella vulgaris induced by high pH: role of magnesium and calcium and practical implications. Bioresource Technology, 105, 114–119.

    Article  CAS  Google Scholar 

  • Wu, Y.-H., Hu, H.-Y., Yu, Y., Zhang, T.-Y., Zhu, S.-F., Zhuang, L.-L., et al. (2014). Microalgal species for sustainable biomass/lipid production using wastewater as resource: a review. Renewable and Sustainable Energy Reviews, 33, 675–688.

    Article  CAS  Google Scholar 

  • Yeh, K. L., Chen, C. Y., & Chang, J. S. (2012). pH-stat photoheterotrophic cultivation of indigenous Chlorella vulgaris ESP-31 for biomass and lipid production using acetic acid as the carbon source. Biochemical Engineering Journal, 64, 1–7. https://doi.org/10.1016/j.bej.2012.02.006.

    Article  CAS  Google Scholar 

  • Youngman, R. E. (1978). Measurement of chlorophyll. United Kingdom: Water Research Centre, Tech. Rep. TR-82, July.

    Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. İlkay Açıkgöz Erkaya and Dr. Tülay Özer at Algae Collection Laboratory of Gazi University for their valuable supports.

Funding

This study is financially supported by the Hacettepe University Scientific Research Projects Coordination Unit (Project number: 014 D11 604 001-764), Ankara, Turkey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Rezaei.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei, R., Akbulut, A. & Sanin, S.L. Effect of algae acclimation to the wastewater medium on the growth kinetics and nutrient removal capacity. Environ Monit Assess 191, 679 (2019). https://doi.org/10.1007/s10661-019-7856-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7856-7

Keywords

Navigation