Skip to main content

Advertisement

Log in

Habitat suitability model with maximum entropy approach for European roe deer (Capreolus capreolus) in the Black Sea Region

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Evaluating the relationships between wildlife species and their habitats helps to predict effects of habitat change for present and future management of wild animal populations. Building ecological models are good ways to understand and manage wildlife populations and to predict various environmental scenarios. Recently, management of ungulates is becoming more important in Europe due to a high demand of hunting and their role in biodiversity. European roe deer (Capreolus capreolus) is the smallest species of cervids and has a widespread distribution in Turkey. In this study, two habitat suitability models of roe deers, living in the Black Sea Region in Turkey, were created by using a maximum entropy (MaxEnt) approach. Two wildlife development areas, which have widely different habitat types, were selected as study sites. As a result of this study, area under the curve (AUC) values were found to be above 0.80. According to the modeling results, in two different habitat types, ecological variables are quite similar in general. This study is the first study on modeling European roe deers in Turkey.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Anonymous (2017). “Sinop Bozburun Yaban Hayatı Geliştirme Sahası”, Orman ve Su İşleri Bakanlığı, 10. Bölge Müdürlüğü Sinop İl Şube Müdürlüğü, Etüt Envanter Raporu, Sinop.

  • Baldwin, R. A. (2009). Use of maximum entropy modelling in wildlife research. Entropy, 11, 854–866. https://doi.org/10.3390/e11040854.

    Article  Google Scholar 

  • Barbet-Massin, M., Jiguet, F., Albert, C. H., & Thuiller, W. (2012). Selecting pseudo-absences for species distribution models: how, where and how many? Methods in Ecology and Evolution, 3(2), 327–338. https://doi.org/10.1111/j.2041-210X.2011.00172.x.

    Article  Google Scholar 

  • Byeon, D. H., Jung, S., & Lee, W. H. (2018). Review of CLIMEX and MaxEnt for studying species distribution in South Korea. Journal of Asia-Pacific Biodiversity. https://doi.org/10.1016/j.japb.2018.06.002.

  • Cunze, S., & Tackenberg, O. (2015). Decomposition of the maximum entropy niche function—a step beyond modelling species distribution. Environmental Modelling & Software, 72, 250–260.

    Article  Google Scholar 

  • Danilkin, A. (1996). Behavioural ecology of Siberian and European roe deer. Chapman & Hall.

  • De Angelis, A., Ricotta, C., Conedera, M., & Pezzatti, G. B. (2015). Modelling the meteorological forest fire niche in heterogeneous pyrologic conditions. PLoS One, 10(2), e0116875.

    Article  Google Scholar 

  • Dussault, C., Poulin, M., Courtois, R., & Ouellet, J. P. (2006). Temporal and spatial distribution of moose-vehicle accidents in the Laurentides Wildlife Reserve, Quebec, Canada. Wildlife Biology, 12(4), 415–426.

    Article  Google Scholar 

  • Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17(1), 43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x.

    Article  Google Scholar 

  • Ertuğrul, E. T., Mert, A., & Oğurlu, İ. (2017). Mapping habitat suitabilities of some wildlife species in Burdur Lake Basin. Turkish Journal of Forestry, 18(2), 149–154. https://doi.org/10.18182/tjf.330950.

    Article  Google Scholar 

  • Evcin, Ö. (2013). Karaca’nın (Capreolus capreolus) Kastamonu İlindeki Yayılışı ve Yaşam Alanlarının Belirlenmesi, Kastamonu University Institute of Science, MSc Dissertation, Kastamonu.

  • Evcin, Ö. (2018). Population ecology of roe deer (Capreolus capreolus) in Kastamonu and Sinop, Kastamonu University Institute of Science, PhD Dissertation, Kastamonu.

  • Gündoğdu, E. (2006). Isparta Yöresinde Yaban Keçisi (Capra aegagrus Erxleben 1777)’nin Populasyon Ekolojisi. Doktora Tezi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü, Isparta.

  • Hanna, J., Warwell, M. V., Maffei, H., Fairweather, M. L., Blodgett, J. T., Zambino, Worrall, P J., Burns, Jacobs J., Richardson, B., Klopfenstein, N., Lundquist, J. E. (2016). Bioclimatic modeling predicts potential distribution of Armillaria solidipes and Pseudotsuga menziesii (Douglas-fir) under contemporary and changing climates in the interior western USA. In Proceedings of the 63rd Annual Western International Forest Disease Work Conference; September 21–25, 2015; Newport, OR. Olympia, WA: Washington Department of Natural Resources; Logan, UT: Utah State University, Quinney College of Natural Resources. pp. 117–123.

  • Harte, J., & Newman, E. A. (2014). Maximum information entropy: a foundation for ecological theory. Trends in Ecology & Evolution, 29(7), 384–389. https://doi.org/10.1016/j.tree.2014.04.009.

    Article  Google Scholar 

  • Harte, J., Zillio, T., Conlisk, E., & Smith, A. B. (2008). Maximum entropy and the state variable approach to macroecology. Ecology, 89(10), 2700–2711. https://doi.org/10.1890/07-1369.1.

    Article  CAS  Google Scholar 

  • Hernandez, P. A., Graham, C. H., Master, L. L., & Albert, D. L. (2006). The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography, 29(5), 773–785. https://doi.org/10.1111/j.0906-7590.2006.04700.x.

    Article  Google Scholar 

  • Hernandez, P. A., Franke, I., Herzog, S. K., Pacheco, V., Paniagua, L., Quintana, H. L., Soto, A., Swenson, J., Tovar, C., Valqui, T. H., & Vargas, J. (2008). Predicting species distributions in poorly-studied landscapes. Biodiversity and Conservation, 17(6), 1353–1366.

    Article  Google Scholar 

  • Hobson, R. D. (1972). Surface roughness in topography: quantitative approach. In R. J. Chorley (Ed.), Spatial analysis in geomorphology (pp. 225–245). London: Metheur.

    Google Scholar 

  • Jung, J. K., Lee, H., & Lee, J. H. (2014). Research status and future subjects to predict pest occurrences in agricultural ecosystems under climate change. Korean Journal of Agricultural and Forest Meteorology, 16(4), 368–383. https://doi.org/10.5532/KJAFM.2014.16.4.368.

    Article  Google Scholar 

  • Keten, A. (2017). Distribution and habitat preference of roe deer (Capreolus capreolus L.) in Düzce Province of Turkey. Journal of the Faculty of Forestry Istanbul University, 67(1), 22–28.

    Google Scholar 

  • Khosravi, R., Hemami, M. R., Malekian, M., Flint, A., & Flint, L. (2016). Maxent modeling for predicting potential distribution of goitered gazelle in central Iran: the effect of extent and grain size on performance of the model. Turkish Journal of Zoology, 40(4), 574–585.

    Article  CAS  Google Scholar 

  • Kıraç, A., & Mert, A. (2019). Will Danford’s lizard become extinct in the future? Polish Journal of Environmental Studies, 28(3), 1741–1748.

    Article  Google Scholar 

  • Kleidon, A., Malhi, Y., & Cox, P. M. (2010). Maximum entropy production in environmental and ecological systems. Philosophical Transactions of the Royal Society, B: Biological Sciences, 365(1545), 1297–1302. https://doi.org/10.1098/rstb.2010.0018.

    Article  Google Scholar 

  • Krop-Benesch, A., Berger, A., Hofer, H., & Heurich, M. (2013). Long-term measurement of roe deer (Capreolus capreolus) (Mammalia: Cervidae) activity using two-axis accelerometers in GPS-collars. The Italian Journal of Zoology, 80(1), 69–81. https://doi.org/10.1080/11250003.2012.725777.

    Article  Google Scholar 

  • Kucuk, O., Evcin, O., & Aslan, F. (2017). Evaluating the frequency, dominance, resemblance analysis and diversity index of bird species in Ilgaz Mountain National Park. Fresenius Environmental Bulletin, 26(8), 5295–5304.

    Google Scholar 

  • Kumar, S., Neven, L. G., Zhu, H., & Zhang, R. (2015). Assessing the global risk of establishment of Cydia pomonella (Lepidoptera: Tortricidae) using CLIMEX and MaxEnt niche models. Journal of Economic Entomology, 108(4), 1708–1719. https://doi.org/10.1093/jee/tov166.

    Article  Google Scholar 

  • Meisingset, E. L., Loe, L. E., Brekkum, Ø., Van Moorter, B., & Mysterud, A. (2013). Red deer habitat selection and movements in relation to roads. The Journal of Wildlife Management, 77(1), 181–191.

    Article  Google Scholar 

  • Merow, C., Smith, M. J., & Silander Jr., J. A. (2013). A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography, 36(10), 1058–1069.

    Article  Google Scholar 

  • Mert, A., & Kirac, A. (2019). GIS as a tool to map habitat suitability for two lizard species using environmental factors. Fresenius Environmental Bulletin, 28(2A), 1330–1336.

    CAS  Google Scholar 

  • Mert, A., & Yalcinkaya, B. (2017). Relationship between some wild mammals and forest structural diversity parameters. Journal of Environmental Biology, 38(5), 879–884.

    Article  Google Scholar 

  • Narouei-Khandan, H. A., Harmon, C. L., Harmon, P., Olmstead, J., Zelenev, V. V., van der Werf, W., Worner, S. P., Senay, D., & van Bruggen, A. H. C. (2017). Potential global and regional geographic distribution of Phomopsis vaccinii on Vaccinium species projected by two species distribution models. European Journal of Plant Pathology, 148(4), 919–930. https://doi.org/10.1007/s10658-017-1146-4.

    Article  Google Scholar 

  • Oğurlu, İ. (2001). Yaban Hayatı Ekolojisi. Isparta: Süleyman Demirel Üniversitesi Orman Fakültesi.

    Google Scholar 

  • Oruç, M. S., Mert, A., & Özdemir, İ. (2017). Eskişehir Çatacık Yöresinde, Çevresel Değişkenler Kullanılarak Kızılgeyik İçin (Cervus elaphus L.) Habitat Uygunluğunun Modellenmesi. Bilge Uluslararası Fen ve Teknoloji Araştırmaları Dergisi, 1(2), 135–142.

    Google Scholar 

  • Özkan, K. (2016). Bir meta bitki toplumunun kuantum analizi. İstanbul Üniversitesi Orman Fakültesi Dergisi, 66(1), 30–45.

    Article  Google Scholar 

  • Patton, D. R. (1992). Wildlife Habitat Relationships in Forested Ecosystems, Timber Pres., Portland, Oregon.

  • Payne, N., F, & Bryant, F. (1998). Wildlife Habitat Management of Forestlands, Krieger Publishing Company, USA.

  • Pearson, R. G., Raxworthy, C. J., Nakamura, M., & Townsend Peterson, A. (2007). Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography, 34(1), 102–117. https://doi.org/10.1111/j.1365-2699.2006.01594.x.

    Article  Google Scholar 

  • Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3–4), 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026.

    Article  Google Scholar 

  • Phillips, S. J., Dudík, M., Elith, J., Graham, C. H., Lehmann, A., Leathwick, J., & Ferrier, S. (2009). Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecological Applications, 19(1), 181–197.

    Article  Google Scholar 

  • Preau, C., Trochet, A., Bertrand, R., & Isselin-Nondedeu, F. (2018). Modeling potential distributions of three European amphibian species comparing Enfa and Maxent. Herpetological Conservation and Biology, 13(1), 91–104.

    Google Scholar 

  • Prior, R. (1995). The roe deer: conservation of a native species. Swan Hill.

  • Pueyo, S., He, F., & Zillio, T. (2007). The maximum entropy formalism and the idiosyncratic theory of biodiversity. Ecology Letters, 10(11), 1017–1028. https://doi.org/10.1111/j.1461-0248.2007.01096.x.

    Article  Google Scholar 

  • Slater, H., & Michael, E. (2012). Predicting the current and future potential distributions of Lymphatic filariasis in Africa using maximum entropy ecological niche modelling. PLoS One, 7(2), e32202. https://doi.org/10.1371/journal.pone.0032202.

    Article  CAS  Google Scholar 

  • Sobek-Swant, S., Kluza, D. A., Cuddington, K., & Lyons, D. B. (2012). Potential distribution of emerald ash borer: what can we learn from ecological niche models using Maxent and GARP? Forest Ecology and Management, 281, 23–31. https://doi.org/10.1016/j.foreco.2012.06.017.

    Article  Google Scholar 

  • Thomas, L., Buckland, S. T., Rexstad, E. A., Laake, J. L., Strindberg, S., Hedley, S. L., Bishop, J. R. B., Marques, T. A., & Burnham, K. P. (2010). Distance software: design and analysis of distance sampling surveys for estimating population size. Journal of Applied Ecology, 47, 5–14. https://doi.org/10.1111/j.1365-2664.2009.01737.x.

    Article  Google Scholar 

  • Waltert, M., Meyer, B., Shanyangi, M. W., Balozi, J. J., Kitwara, O., Qolli, S., Krischke, H., & Muehlenberg, M. (2008). Foot surveys of large mammals in woodlands of western Tanzania. Journal of Wildlife Management, 72, 603–610. https://doi.org/10.2193/2006-456.

    Article  Google Scholar 

  • Wu, W., Li, Y., & Hu, Y. (2016). Simulation of potential habitat overlap between red deer (Cervus elaphus) and roe deer (Capreolus capreolus) in northeastern China. PeerJ, 4, e1756. https://doi.org/10.7717/peerj.1756.

    Article  CAS  Google Scholar 

  • Xiao, X., McGlinn, D. J., & White, E. P. (2015). A strong test of the maximum entropy theory of ecology. The American Naturalist, 185(3), E70–E80. https://doi.org/10.1086/679576.

    Article  Google Scholar 

  • Zhang, K., Yao, L., Meng, J., & Tao, J. (2018). Maxent modeling for predicting the potential geographical distribution of two peony species under climate change. Science of the Total Environment, 634, 1326–1334. https://doi.org/10.1016/j.scitotenv.2018.04.112.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Ministry of Agriculture and Forestry personnel for their contribution and efforts done for the field studies and to Dr. Ali Çelik and Dr. Erol Akkuzu for their support.

Funding

This work was supported by the Ministry of Agriculture and Forestry Protocol Project and Kastamonu University Scientific Research Projects Coordination Department (Project Number KÜ-BAP03/2015-6)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozkan Evcin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evcin, O., Kucuk, O. & Akturk, E. Habitat suitability model with maximum entropy approach for European roe deer (Capreolus capreolus) in the Black Sea Region. Environ Monit Assess 191, 669 (2019). https://doi.org/10.1007/s10661-019-7853-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7853-x

Keywords

Navigation