Skip to main content

Advertisement

Log in

Airborne microplastics: a review study on method for analysis, occurrence, movement and risks

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Microplastics (of size < 5 mm) pollution in our environment is of current concern by researchers, public media and non-governmental organizations. Implications by their presence in aquatic and soil ecosystems have been well studied and documented, but less attention has been paid on airborne microplastics (MPs). Studies concerning airborne microplastics started from 2016 and only a few (n = 13) have been published to date. Although, studies may increase in the following years, since air is very important for human survival. Microplastics have been observed in atmospheric fallouts in indoor and outdoor environments using a sampling or vacuum pump, rain sampler, and/or particulate fallout collector. Identification and quantification have been carried out by visual, spectroscopic, and spectrometric techniques. Factors such as meteorological, climatic, and anthropogenic influence the distribution and movement of airborne MP. Human exposure may be through inhalation, dermal, and open meal during fallout, with their potential biopersistence and translocation. Ingestion may cause localized inflammation and cancer due to responses by the immune cells, especially in individuals with compromised metabolism and poor clearance mechanisms. Ecological risks involve possible contamination of the ecosystem through a dynamic relationship of MPs in soil, water, and air forming a MP contamination cycle. The present review aimed at providing a comprehensive overview of current knowledge or information regarding microplastics in air, identifying gap in knowledge, and giving suggestions for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbasi, S., Behnam, K., Farid, M., Andrew, T., Frank, J. K., Ana, O. D., & Neemat, J. (2019). Distribution and potential health impacts of microplastics and microrubbers in air and street dusts from Asaluyeh County, Iran. Environmental Pollution, 244, 153–164. https://doi.org/10.1016/j.envpol.2018.10.039.

    Article  CAS  Google Scholar 

  • Allen, S., Deonie, A., Vernon, R. P., Gaël, L. R., Pilar, D. J., Anaëlle, S., Stéphane, B., & Didier, G. (2019). Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nature Geoscience, 12, 339–344. https://doi.org/10.1038/s41561-019-0335-5.

    Article  CAS  Google Scholar 

  • Alzona, J., Cohen, B. L., Rudolph, H., Jow, H. N., & Frohliger, J. O. (1979). Indoor – outdoor relationships for airborne particulate matter of outdoor origin. Atmospheric Environment, 13, 55–60. https://doi.org/10.1016/0004-6981(79)90244-0.

    Article  CAS  Google Scholar 

  • Bakand, S., Hayes, A., & Dechsakulthorn, F. (2012). Nanoparticles: a review of particle toxicology following inhalation exposure. Inhalation Toxicology, 24(2), 125–135. https://doi.org/10.3109/08958378.2010.642021.

    Article  CAS  Google Scholar 

  • Beckett, W. S. (2000). Occupational respiratory diseases. The New England Journal of Medicine, 342(6), 406–413. https://doi.org/10.1056/NEJM200002103420607.

    Article  CAS  Google Scholar 

  • Besley, A., Martina, G. V., Paul, B., & Thijs, B. (2016). A standardized method for sampling and extraction methods for quantifying microplastics in beach sand. Marine Pollution Bulletin, 55, 1–8. https://doi.org/10.1016/j.marpolbul.2016.08.055.

    Article  CAS  Google Scholar 

  • Brodie, E. L., DeSantis, T. Z., Parker, J. P. M., Zubietta, I. X., Piceno, Y. M., & Andersen, G. L. (2007). Urban aerosols harbor diverse and dynamic bacterial populations. PNAS, 104(1), 199–204. https://doi.org/10.1073/pnas.0608255104.

    Article  Google Scholar 

  • Browne, M. A., Galloway, T. S., & Thompson, R. C. (2010). Spatial patterns of plastic debris along estuarine shorelines. Environmental Science & Technology, 44(9), 3404–3409. https://doi.org/10.1021/es903784e.

    Article  CAS  Google Scholar 

  • Cai, L., Wang, J., Peng, J., Tan, Z., Zhan, Z., Tan, X., & Chen, Q. (2017). Characteristic of microplastics in the atmospheric fallout from Dongguan city, China: preliminary research and first evidence. Environemental Science and Pollution Research, 24(32), 24928–24935. https://doi.org/10.1007/s11356-017-0116-x.

    Article  Google Scholar 

  • Carbery, M., O’Connor, W., & Palanisami, T. (2018). Trophic transfer of microplastics and mixed contaminants in the marine food web and implications for human health. Environment International, 115, 400–409. https://doi.org/10.1016/j.envint.2018.03.007.

    Article  Google Scholar 

  • Carvalho, T. C., Peters, J. I., & Williams III, R. O. (2011). Influence of particle size on regional lung deposition - what evidence is there? International Journal of Pharmaceutics, 406, 1–10. https://doi.org/10.1016/j.ijpharm.2010.12.040.

    Article  CAS  Google Scholar 

  • Catarino, A. I., Valeria, M., William, G. S., Richard, C. T., & Theodore, B. H. (2018). Low levels of microplastics (MP) in wild mussels indicate that MP ingestion by humans is minimal compared to exposure via household fibres fallout during a meal. Environmental Pollution, 237, 675–684. https://doi.org/10.1016/j.envpol.2018.02.069.

    Article  CAS  Google Scholar 

  • Chang, C. (2010). The immune effects of naturally occurring and synthetic nanoparticles. Journal of Autoimmunity, 34, J234–J246. https://doi.org/10.1016/j.jaut.2009.11.009.

    Article  CAS  Google Scholar 

  • Chun-Huem, K., Dong-Chul, Y., Young-Min, K., Woong-Soo, H., Gi-Sun, K., Mi-Jung, P., Young, S. K., & Dalwoong, C. (2010). A study on characteristics of atmospheric heavy metals in subway station. Toxicology Research, 26(2), 157–162.

    Article  Google Scholar 

  • Churg, A., & Brauer, M. (2000). Ambient atmospheric particles in the airways of human lungs. Ultrastructural Pathology, 24, 353–361. https://doi.org/10.1002/(SICI)1099-1301(199901/03)1.

    Article  CAS  Google Scholar 

  • Cole, M., Pennie, L., Claudia, H., & Tamara, S. G. (2011). Microplastics as contaminants in the marine environment: a review. Marine Pollution Bulletin, 62, 2588–2597. https://doi.org/10.1016/j.marpolbul.2011.09.025.

    Article  CAS  Google Scholar 

  • Dehghani, S., Farid, M., & Razegheh, A. (2017). Microplastic pollution in deposited urban dust, Tehran metropolis, Iran. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-017-9674-1.

  • Donaldson, K., & Tran, C. L. (2002). Inflammation caused by particles and fibers. Inhalation Toxicology, 14, 5–27. https://doi.org/10.1080/089583701753338613.

    Article  CAS  Google Scholar 

  • Donaldson, K., Brown, D., Clouter, A., Duffin, R., MacNee, W., Renwick, L., Tran, L., & Stone, V. (2002). The pulmonary toxicology of ultrafine particles. Journal of Aerosol Medicine, 15(2), 213–220. https://doi.org/10.1089/089426802320282338.

    Article  CAS  Google Scholar 

  • Dris, R., Gasperi, J., Saad, M., Mirande, C., & Tassin, B. (2016). Synthetic fibers in atmospheric fallout: a source of microplastics in the environment? Marine Pollution Bulletin, 104, 290–293.

    Article  CAS  Google Scholar 

  • Dris, R., Gasperi, J., Mirande, C., Mandin, C., Guerrouache, M., Langlois, V., & Tassin, B. (2017). A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environmental Pollution, 221, 453–458.

    Article  CAS  Google Scholar 

  • Duis, K., & Coors, A. (2016). Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects. Environmental Sciences Europe, 28(1), 2.

    Article  Google Scholar 

  • Enyoh, C. E. (2019). Microplastic pollution in Nigeria: a call for concern. 26Th meeting of the Imo State Chapter of the Chemical Society of Nigeria (CSN) held at Imo State University, Nigeria. https://doi.org/10.13140/RG.2.2.21027.9190.

  • Enyoh, C. E., & Verla, A. W. (2019). We are breathing plastic; don’t just look down, look up. Presented at the 3rd IMSU World Environment Day International Conference, held at Main Auditorium, Imo State University, Owerri, Imo State, Nigeria. https://doi.org/10.13140/RG.2.2.21027.91680.

  • Enyoh, C. E., Verla, A. W., & Verla, E. N. (2019). Uptake of microplastics by plant: a reason to worry or to be happy? World Scientific News, 131, 256–267.

    Google Scholar 

  • Erni-Cassola, G., Gibson, M. I., Thompson, R. C., & Christie-Oleza, J. A. (2017). Lost, but Found with Nile Red: a novel method for detecting and quantifying small microplastics (1 mm to 20 μm) in Environmental Samples. Environmental Science & Technology, 5, 13641–13648.

    Article  Google Scholar 

  • Frederic, F., Ghislain, F., Huixia, Q., Chengda, Y., Tomoo, H., Dominique, B., Suzy, C., Mirela, D. G. S., Susi, E. D., & Roland, B. (2015). Facial skin pores: a multiethnic study. Clinical, Cosmetic and Investigational Dermatology, 8, 85–93. https://doi.org/10.2147/CCID.S74401.

    Article  Google Scholar 

  • Gall, S. C., & Thompson, R. C. (2015). The impact of debris on marine life. Marine Pollution Bulletin, 92(1-2), 170–179. https://doi.org/10.1016/j.marpolbul.2014.12.041.

    Article  CAS  Google Scholar 

  • Gasperi, J., Stephanie, L. W., Rachid, D., France, C., Corinne, M., Mohamed, G., Valérie, L., Frank, J. K., & Bruno, T. (2018). Microplastics in air: are we breathing it in? Current Opinion in Environmental Science & Health, 1, 1–5.

    Article  Google Scholar 

  • GESAMP. (2016). Sources, fate and effects of microplastics in the marine environment: part two of a global assessment. IMO/FAO/ UNESCO-IOC/UNIDO/WMO/IAEA/UN/ UNEP/UNDP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection: 220 p.

  • Gröninga, M., Lutzbf, H. O., Roller-Lutzb, Z., KralikcL, M. G., & Pöltensteine, L. (2012). A simple rain collector preventing water re-evaporation dedicated for δ18O and δ2H analysis of cumulative precipitation samples. Journal of Hydrology, 448–449(2), 195–200. https://doi.org/10.1016/j.jhydrol.2012.04.041.

    Article  CAS  Google Scholar 

  • Hahladakisa, J. N., Costas, A. V., Roland, W., Eleni, I., & Phil, P. (2018). An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal and recycling. Journal of Hazardous Materials, 344, 179–199.

    Article  Google Scholar 

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14(8), 975–1001. https://doi.org/10.1016/0043-1354(80)90143-8.

    Article  Google Scholar 

  • Heyder, J. (2004). Deposition of inhaled particles in the human respiratory tract and consequences for regional targeting in respiratory drug delivery. Proceedings of the American Thoracic Society, 1, 315–320. https://doi.org/10.1513/pats.200409-046TA.

    Article  CAS  Google Scholar 

  • Hidalgo-Ruz, V., Gutow, L., Thompson, R. C., & Thiel, M. (2012). Microplastics in the marine environment: a review of the methods used for identification and quantification. Environmental Science & Technology, 46, 3060–3075.

    Article  CAS  Google Scholar 

  • Huang, D. Y., Zhou, S. G., Hong, W., Feng, W. F., & Tao, L. (2013). Pollution characteristics of volatile organic compounds, polycyclic aromatic hydrocarbons and phthalate esters emitted from plastic wastes recycling granulation plants in Xingtan Town South China. Atmospheric Environment, 71, 327–334.

    Article  CAS  Google Scholar 

  • Ibe, F. C., Njoku, P. C., Alinnor, J. I., & Opara, A. I. (2016). evaluation of ambient air quality in parts of Imo State, Nigeria. Research Journal of Chemical Sciences, 6(1), 41–52.

    CAS  Google Scholar 

  • Ibe, F. C., Opara, A. I., Njoku, P. C., & Alinnor, J. I. (2017). Ambient air quality assessment of Orlu, Southeastern, Nigeria. Journal of Applied Sciences, 17, 441–457.

    Article  Google Scholar 

  • Innovation nilu. (2019). particulate fallout and precipitation collectors. http://products.nilu.no/language/en-GB/ProductsDivision/ParticulateFalloutandPrecipitationCollectors.aspx. Accessed 12/6/2019.

  • Jeong, Y., Jang, J. Y., & Joo, E. J. (1987). Mercury concentration in urban ambient air-based on the data acquired from Shinchon and Seoul. Journal of Korean Society for Atmospheric Environment, 25, 18–26.

  • Joao, P. C., Ana, P., Patrıcia, S. M. S., Armando, C. D., & Teresa, R. S. (2019). Microplastics in soils: assessment, analytics and risks. Environment and Chemistry, 16, 18–30. https://doi.org/10.1071/EN18150.

    Article  CAS  Google Scholar 

  • Kaya, A. T., Meral, Y., & Senem, C. B. (2018). Ubiquitous exposure to microfiber pollution in the air. The European Physical Journal - Plus, 133(488), 1–10. https://doi.org/10.1140/epjp/i2018-12372-7.

    Article  CAS  Google Scholar 

  • Kirstein, I. V., Kirmizi, S., Wichels, A., Garin-Fernandez, A., Erler, R., Löder, M., & Gerdts, G. (2016). Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles. Marine Environmental Research, 120, 1–8.

    Article  CAS  Google Scholar 

  • Klein, M., & Fischer, E. K. (2019). Microplastic abundance in atmospheric deposition within the metropolitan area of Hamburg, Germany. Science of the Total Environment, 685, 96–103. https://doi.org/10.1016/j.scitotenv.2019.05.405.

    Article  Google Scholar 

  • Klein, S., Dimzon, I. K., & Knepper, T. P. (2018). Analysis, occurrence, and degradation of microplastics in the aqueous environment. In M. Wagner & S. Lambert (Eds.), Freshwater Microplastics, Hdb Env Chem (Vol. 58, pp. 51–62).

    Chapter  Google Scholar 

  • Kweon, S. H., & Son, D. H. (1985). Studies on the content of the heavy metals of total suspended particles in air. Chung-Ang J Pharmacal Sci., 1, 15–29.

    Google Scholar 

  • Lester, E. B., John, S. A., & Richard, D. O. (1966). Effect of electrostatic charge on the contamination of plastic food containers by airborne bacterial spores. Applied Microbiology, 14(6), 905–913.

    Google Scholar 

  • Lippmann, M., Yeates, D. B., & Albert, R. E. (1980). Deposition, retention, and clearance of inhaled particles. British Journal of Industrial Medicine, 37, 337–362.

    CAS  Google Scholar 

  • Lithner, D., Larsson, Å., & Dave, G. (2011). Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Science of The Total Environment, 409(18), 3309–3324. https://doi.org/10.1016/j.scitotenv.2011.04.038.

    Article  CAS  Google Scholar 

  • Liu, K., Xiaohui, W., Tao, F., Pei, X., Lixin, Z., & Daoji, L. (2019). Source and potential risk assessment of suspended atmospheric microplastics in Shanghai. Science of the Total Environment, 675(2019), 462–471.

    Article  CAS  Google Scholar 

  • Liu, K., Wu, T., Wang, X., Song, Z., Zong, C., Wei, N., & Li, D. (2019a). Consistent transport of terrestrial microplastics to the ocean through atmosphere. Environmental Science & Technology. https://doi.org/10.1021/acs.est.9b03427.

  • Liu, K., Wang, X., Nian, W., Zhangyu, S., & Li, D. (2019b). Accurate quantification and transport estimation of suspended atmospheric microplastics in megacities: implications for human health. Environment International, 132, 105127. https://doi.org/10.1016/j.envint.2019.105127.

    Article  CAS  Google Scholar 

  • Liu, C., Li, J., Zhang, Y., Wang, L., Deng, J., Gao, Y., & Sun, H. (2019c). Widespread distribution of PET and PC microplastics in dust in urban China and their estimated human exposure. Environment International, 128, 116–124. https://doi.org/10.1016/j.envint.2019.04.024.

    Article  CAS  Google Scholar 

  • Martin, G. J. L., & Gunnar, G. (2015). Methodology used for the detection and identification of microplastics—a critical appraisal. In M. Bergmann et al. (Eds.), Marine Anthropogenic Litter Chapter 8.

  • Mato, Y., Isobe, T., Takada, H., Kanehiro, H., Ohtake, C., & Kaminuma, T. (2001). Plastic resin pellets as a transport medium for toxic chemicals in the marine environment. Environmental Science & Technology, 35, 318–324.

    Article  CAS  Google Scholar 

  • Morrow, P. E. (1988). Possible mechanisms to explain dust overloading of the lungs. Fundamental and Applied Toxicology, 10, 369–384. https://doi.org/10.1016/0272-0590(88)90284-9.

    Article  CAS  Google Scholar 

  • Morrow, P. E. (1992). Dust overloading of the lungs: update and appraisal. Toxicology and Applied Pharmacology, 113, 1e12. https://doi.org/10.1016/0041-008X(92)90002-A.

    Article  Google Scholar 

  • O’Dowd, C. D., & de Leeuw, G. (2007). Marine aerosol production: a review of the current knowledge. Philosophical Transactions of the Royal Society, 365, 1753–1774. https://doi.org/10.1098/rsta.2007.2043.

    Article  CAS  Google Scholar 

  • Ogata, Y. T. H., Mizukawa, K., Iwasa, S., Endo, S., Mato, Y., Saha, M., Booyatumanondo, R., Zakaria, M. P., Dung, L. Q., Gordon, M., Moore, C., Karapanagioti, H. K., & Thompson, R. (2009). International Pellet Watch: global monitoring of persistent organic pollutants (POPs) in coastal waters. 1. Initial phase data on PCBs, DDTs, and HCHs. Marine Pollution Bulletin, 58, 1437–1446.

    Article  CAS  Google Scholar 

  • Park, H. K. (2004). A study of PM-10 and heavy metal characteristics in the air at the each site of a subway station. Gumi: Kumoh National Institute of Technology.

    Google Scholar 

  • Pauly, J.L., Stegmeier, S.J., Allaart, H.A., Cheney, R.T., Zhang, P.J., Mayer, A.G., Streck, R.J., (1998). Inhaled cellulosic and plastic fibers found in human lung tissue. Cancer Epidemiology, Biomarkers Prev. 7, 419–428.

  • Paytan, A., Mackey, K. R. M., Chen, Y., Lima, I. D., Doney, S. C., Mahowald, N., Labiosa, R., & Post, A. F. (2009). Toxicity of atmospheric aerosols on marine phytoplankton. PNAS, 106(12), 4601–4605. https://doi.org/10.1073/pnas.0811486106.

    Article  Google Scholar 

  • Perry, J. S. (1988). Atmospheric transport and dispersion of air pollutants associated with vehicular emissions. In A. Y. Watson, R. R. Bates, & D. Kennedy (Eds.), Air Pollution, the Automobile, and Public Health. Washington (DC): National Academies Press (US).

    Google Scholar 

  • Pfeiffer, R. L. (2005). Sampling for PM10 and PM2.5 particulates. Publications from USDA-ARS / UNL Faculty. 1393. digitalcommons.unl.edu/usdaarsfacpub/1393. Accessed 12/09/2019.

  • Prata J. C. (2018). Airborne microplastics: Consequences to human health? Environmental Pollution, 234, 115–126. https://doi.org/10.1016/j.envpol.2017.11.043.

  • Pimentel, J. C., Avila, R., & Lourenço, A. G. (1975). Respiratory disease caused by synthetic fibers: a new occupational disease. Thorax, 30, 204–219. https://doi.org/10.1136/thx.30.2.204.

    Article  CAS  Google Scholar 

  • Qi, Y., Yang, X., Pelaez, A. M., Lwanga, E. H., Beriot, N., Gertsen, H., Garbeva, P., & Geissen, V. (2018). Macro-and micro-plastics in soil-plant system: effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Science of The Total Environment, 645, 1048–1056.

    Article  CAS  Google Scholar 

  • Revel, M., Amélie, C., & Catherine, M. (2018). Micro(nano)plastics: a threat to human health? Current Opinion in Environmental Science & Health, 1, 17–23. https://doi.org/10.1016/j.coesh.2017.10.003.

    Article  Google Scholar 

  • Richard, H. (2016). Biofilm facilitates metal accumulation onto new plastic pellets in aquatic environments. A thesis submitted to the faculty of San Francisco State University. Assessed 15/06/2019

  • Rochman, C., Hentschel, B. T., Teh, S. J. (2014). Long-term sorption of metals is similar among plastic types: implications for plastic debris in aquatic environments. https://doi.org/10.1371/journal.pone.0085433.

  • Schnelle-Kreis, J., Gebefiigi, I., Welzl, G., Jaensch, T., & Kettrup, A. (2001). Occurrence of particle-associated polycyclic aromatic compounds in ambient air of the city of Munich. Atmospheric Environment, 35(1), S71–S81. https://doi.org/10.1016/S1352-2310(00)00557-4.

    Article  CAS  Google Scholar 

  • Schwarze, P. E., Ovrevik, J., Lag, M., Refsnes, M., Nafstad, P., Hetland, R. B., & Dybing, E. (2006). Particulate matter properties and health effects: consistency of epidemiological and toxicological studies. Human & Experimental Toxicology, 25, 559–579.

    Article  CAS  Google Scholar 

  • Shim, W. J., Hong, S. H., & Eo, S. E. (2017). Identification methods in microplastic analysis: a review. Analytical Methods, 9, 1384–1391.

    Article  CAS  Google Scholar 

  • Smith, M., David, C. L., Rochman, C. M., & Roni, A. N. (2018). Microplastics in seafood and the implications for human health. Current Environmental Health Reports, 5, 375–386.

    Article  CAS  Google Scholar 

  • Song, Y. K., Hong, S. H., Jang, M., Han, G. M., Rani, M., & Lee, J. (2015). A comparison of microscopic and spectroscopic identification methods for analysis of microplastics in environmental samples. Marine Pollution Bulletin, 93, 202–209.

    Article  CAS  Google Scholar 

  • Swift, D. L. (1980). Aerosols and humidity therapy. Generation and respiratory deposition of therapeutic aerosols. The American Review of Respiratory Disease, 122(5-2), 71–77.

    Article  CAS  Google Scholar 

  • Teuten, E. L., Rowland, S. J., Galloway, T. S., & Thompson, R. C. (2007). Potential for plastics to transport hydrophobic contaminants. Environmental Science & Technology, 41, 7759–7764. https://doi.org/10.1021/es071737s.

    Article  CAS  Google Scholar 

  • Teuten, E. L., Saquing, J. M., Knappe, D. R., Barlaz, M. A., Jonsson, S., Bjorn, A., Rowland, S. J., Thompson, R. C., Galloway, T. S., Yamashita, R., Ochi, D., Watanuki, Y., Moore, C., Viet, P. H., Tana, T. S., Prudente, M., Boonyatumanond, R., Zakaria, M. P., Akkhavong, K., Ogata, Y., Hirai, H., Iwasa, S., Mizukawa, K., Hagino, Y., Imamura, A., Saha, M., & Takada, H. (2009). Transport and release of chemicals from plastics to the environment and to wildlife. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 2027–2045. https://doi.org/10.1098/rstb.2008.0284.

    Article  CAS  Google Scholar 

  • Thompson, R. C. (2006). Plastic debris in the marine environment:consequences and solution. In J. C. Krause, H. Nordheim, & S. Brager (Eds.), Marine nature conservation in Europe (pp. 107–115). Stralsund: Federal Agency for Nature Conservation.

    Google Scholar 

  • UNEP. (2016). Marine debris: understanding, preventing and mitigating the significant adverse impacts on marine and coastal. Secretariat of the Convention on Biological Diversity. Biodiversity. Technical Series No. 83

  • Valavanidis, A., Vlachogianni, T., Fiotakis, K., & Loridas, S. (2013). Pulmonary oxidative stress, inflammation and cancer: respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenisis through reactive oxygen species mechanisms. International Journal of Environmental Research and Public Health, 10(9), 3886–3907.

    Article  Google Scholar 

  • Van Cauwenberghe, L., Vanreusel, A., Mees, J., & Janssen, C. R. (2013). Microplastic pollution in deep-sea sediments. Environmental Pollution, 182, 495–499.

    Article  Google Scholar 

  • Van Cauwenberghe, L., Devriese, L., Galgani, F., Robbens, J., & Janssen, C. R. (2015). Microplastics in sediments: a review of techniques, occurrence and effects. Marine Environmental Research, 111, 5–17. https://doi.org/10.1016/j.marenvres.2015.06.007.

    Article  CAS  Google Scholar 

  • Van der Does, M., Knippertz, P., Zschenderlein, P., Giles, H. R., & Stuut, J. B. W. (2018). The mysterious long-range transport of giant mineral dust particles. Science Advances, 4, eaau2768.

    Article  Google Scholar 

  • Van Vaeck, L., & Van Cauwenberghe, K. (1978). Cascade impactor measurements of the size distribution of the major classes of organic pollutants in atmospheric particulate matter. Atmospheric Environment, 12, 2229–2239. https://doi.org/10.1016/0004-6981(78)90179-8.

    Article  Google Scholar 

  • Verla, E. N., Verla, A. W., & Enyoh, C. E. (2017). Pollution assessment models of soils in Portharcourt City, Rivers State, Nigeria. World News of Natural Sciences (WNOFNS), 12, 1–23.

    Google Scholar 

  • Verla, A. W., Enyoh, C. E., & Verla, E. N. (2019a). Microplastics, an emerging concern: a review of analytical techniques for detecting and quantifying microplastic. Analytical Methods in Environmental Chemistry Journal, l2, 15–32. https://doi.org/10.24200/amecj.

    Article  Google Scholar 

  • Verla, A. W., Enyoh, C. E., Verla, E. N., & Nwarnorh, K. O. (2019b). Microplastic-toxic chemical interaction: a review study on quantified levels, mechanism and implications. Preprints. https://doi.org/10.20944/preprints201908.0260.v1.

  • Verla, A. W., Verla, E. N., Chigbo, M. A., Kelechi, C. L., Ngozi, O. S., & Enyoh, C. E. (2019c). Biomonitoring of heavy metals in blood and urine of African children from Owerri Metropolis, Eastern Nigeria. Journal of Chemical Health Risks, 9(1), 11–26. https://doi.org/10.22034/jchr.2019.664161.

    Article  CAS  Google Scholar 

  • Vianello, A., Rasmus, L. J., Li, L., & Jes, V. (2019). Simulating human exposure to indoor airborne microplastics using a breathing thermal manikin. Scientific Reports, 9, 8670. https://doi.org/10.1038/s41598-019-45054-w.

    Article  CAS  Google Scholar 

  • Wagner, J., Wang, Z., Ghosal, S., Rochman, C. M., Gassel, M., & Wall, S. (2016). Novel method for the extraction and identification of microplastics in ocean trawl and fish gut matrices. Analytical Methods 1-10.

  • Wang, J., Tan, Z., Peng, J., Qiu, Q., & Li, M. (2016). The behaviors of microplastics in the marine environment. Marine Environmental Research, 113, 7–17. https://doi.org/10.1016/j.marenvres.2015.10.014.

    Article  CAS  Google Scholar 

  • WHO. (1997). Determination of airborne fibre number concentrations: a recommended method, by phasecontrast optical microscopy (membrane filter method) [no volume].

  • Wright, S. L., & Kelly, F. J. (2017). Plastic and human health: a micro issue? Environmental Science & Technology, 51(12), 6634–6647.

    Article  CAS  Google Scholar 

  • Wright, S. L., Thompson, R. C., & Galloway, T. S. (2013). The physical impacts of microplastics on marine organisms: a review. Environmental Pollution, 178, 483–492.

    Article  CAS  Google Scholar 

  • Zettler, E. R., Mincer, T. J., & Amaral-Zettler, L. A. (2013). Life in the “Plastisphere”: microbial communities on plastic marine debris. Environmental Science & Technology, 47(13), 7137–7146.

    Article  CAS  Google Scholar 

  • Zhang, Y., Gao, T., Kang, S., & Sillanpää, M. (2019). Importance of atmospheric transport for microplastics deposited in remote areas. Environmental Pollution. https://doi.org/10.1016/j.envpol.2019.07.121.

  • Zhou, Q., Tian, C., & Luo, Y. (2017). Various forms and deposition fluxes of microplastics identified in the coastal urban atmosphere. Chinese Science Bulletin, 62(33), 3902–3910. https://doi.org/10.1360/N972017-00956.

    Article  Google Scholar 

  • Zhu, F., Changyin, Z., Chao, W., & Cheng, G. (2019). Occurrence and ecological impacts of microplastics in soil systems: a review. Bulletin of Environmental Contamination and Toxicology. https://doi.org/10.1007/s00128-019-02623-z.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Ebere Enyoh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enyoh, C.E., Verla, A.W., Verla, E.N. et al. Airborne microplastics: a review study on method for analysis, occurrence, movement and risks. Environ Monit Assess 191, 668 (2019). https://doi.org/10.1007/s10661-019-7842-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7842-0

Keywords

Navigation