Skip to main content

Advertisement

Log in

Random forest, support vector machine, and neural networks to modelling suspended sediment in Tigris River-Baghdad

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Suspended sediment is one of the most influential parameters on the water bodies’ pollution. It can carry different pollutants with different concentration through the suspension movement in the flow. Therefore, it is of utmost importance to monitoring or modelling these loads so that an accurate sediment reduction strategy can be adopted. However, the monitoring process is laborious and time-consuming task. Thus, modelling is suggested as an alternative method. In this study, three different methods of artificial intelligence (i.e., random forest, support vector machine (Radial Basis Function), and artificial neural network) were employed to model and predict the suspended load at Sarai Station in Baghdad. To this end, observed flow rate (m3/s) and the corresponding suspended sediment concentration (mg/l) measured over the periods 1962–1981 and 2000–2010 were collected. Auto and partial correlation was used to identify the best combinations of input model data. The data was randomly partitioned into 75% for training and 25% for validation. The confidence interval was hypothesized to assess the uncertainty in the observed and predicted data. Whereas, the k-fold cross validation was used to quantify the uncertainty in the modelling results. The predictive modelling results for the three evaluated methods were assessed based on R2, RMSE, and NSE coefficient. Results show that random forest has the superior performance among the others. The total suspended sediment transported was estimated to be 72,734,852 ton during the period 2000–2010.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Afan, H. A., El-shafie, A., Mohtar, W. H. M. W., & Yaseen, Z. M. (2016). Past, present and prospect of an Artificial Intelligence (AI) based model for sediment transport prediction. Journal of Hydrology, 541, 902–913.

    Article  Google Scholar 

  • Al-Ansari, N., Ali, S., & Taqa, A. (1979). Sediment discharge of the River Tigris at Baghdad (Iraq). Canberra Symposium: The Hydrology of Areas of Low Precipitation, (July).

  • Ali, A. A., Al-Ansari, N. A., Al-suhail, Q., & Knutsson, S. (2017). Spatial measurement of bed load transport in Tigris River. Journal of Earth Sciences and Geotechnical Engineering, 7(4), 55–75.

    Google Scholar 

  • Al-Mukhtar, M. (2016). Modelling the root zone soil moisture using artificial neural networks, a case study. Environmental Earth Sciences, 75(15), 1124.

    Article  Google Scholar 

  • Al-Mukhtar, M., & Al-Yaseen, F. (2019). Modeling water quality parameters using data-driven models, a case study Abu-Ziriq Marsh in South of Iraq. Hydrology, 6(1), 24.

    Article  Google Scholar 

  • Alp, M., & Cigizoglu, H. (2007). Suspended sediment load simulation by two artificial neural network methods using hydrometeorological data. Environmental Modelling & Software, 22(1), 2–13.

    Article  Google Scholar 

  • Arnold, J., & Srinivasan, R. (1998). Large area hydrologic modeling and assessment part I: model development1. JAWRA Journal of the American Water Resources Association, 34(1), 73–89.

    Article  CAS  Google Scholar 

  • Ascough, J., Baffaut, C., Nearing, M., & Liu, B. (1997). The WEPP watershed model. I. Hydrology and erosion. Transactions of the ASAE, 40(4), 921–933.

    Article  Google Scholar 

  • Bozkurt, D., & Sen, O. L. (2013). Climate change impacts in the Euphrates–Tigris Basin based on different model and scenario simulations. Journal of Hydrology, 480, 149–161.

    Article  Google Scholar 

  • Breiman, L. (1996). Bagging predictors. Machine Learning, 24(421), 123–140.

    Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

    Article  Google Scholar 

  • Casanueva, A., Frías, M. D., Herrera, S., San-Martín, D., Zaninovic, K., & Gutiérrez, J. M. (2014). Statistical downscaling of climate impact indices: testing the direct approach. Climatic Change, 127(3–4), 547–560.

    Article  Google Scholar 

  • Çimen, M. (2008). Estimation of daily suspended sediments using support vector machines. Hydrological Sciences Journal, 53(3), 656–666.

    Article  Google Scholar 

  • Coppola, E., Jr., Poulton, M., Charles, E., Dustman, J., & Szidarovszky, F. (2003). Application of artificial neural networks to complex groundwater management problems. Natural Resources Research, 12(4), 303–320.

    Article  Google Scholar 

  • Daliakopoulos, I. N., Coulibaly, P., & Tsanis, I. K. (2005). Groundwater level forecasting using artificial neural networks. Journal of Hydrology, 309(1–4), 229–240.

    Article  Google Scholar 

  • Dawson, C. W., & Wilby, R. L. (2001). Hydrological modelling using artificial neural networks. Progress in Physical Geography, 25(1), 80–108.

    Article  Google Scholar 

  • De’ath, G. (2007). Boosted trees for ecological modeling and prediction. Ecology, 88(1), 243–251.

    Article  Google Scholar 

  • DiCiccio, T. J., & Efron, B. (1996). Bootstrap confidence intervals. Statistical Science, 189–212.

  • Doğan, E., Yüksel, İ., & Kişi, Ö. (2007). Estimation of total sediment load concentration obtained by experimental study using artificial neural networks. Environmental Fluid Mechanics, 7(4), 271–288.

    Article  Google Scholar 

  • Dolling, O. R., & Varas, E. A. (2002). Artificial neural networks for streamflow prediction. Journal of Hydraulic Research, 40(5), 547–554.

    Article  Google Scholar 

  • Dumedah, G., Walker, J. P., & Chik, L. (2014). Assessing artificial neural networks and statistical methods for infilling missing soil moisture records. Journal of Hydrology, 515, 330–344.

    Article  Google Scholar 

  • Efthimiou, N. (2019). The role of sediment rating curve development methodology on river load modeling. Environmental Monitoring and Assessment, 191(2), 108.

    Article  Google Scholar 

  • Flood, I., & Kartam, N. (1994). Neural networks in civil engineering. II: Systems and application. Journal of Computing in Civil Engineering, 8(2), 149–162.

    Article  Google Scholar 

  • Francke, T., Opez-Taraz’, J. A. L., & Oder, B. S. (2010). Estimation of suspended sediment concentration and yield using linear models, random forests and quantile regression forests. Hydrological Processes, 2274(2008), 2267–2274.

    Google Scholar 

  • Ghumman, A. R., Ahmad, S., & Hashmi, H. N. (2018). Performance assessment of artificial neural networks and support vector regression models for stream flow predictions. Environmental Monitoring and Assessment, 190(12), 704.

    Article  Google Scholar 

  • Haji, S., Mirbagheri, S. A., Javid, A. H., & Najafpur, G. D. (2014). A wavelet support vector machine combination model for daily suspended. International Journal of Engineering, 27(6), 855–864.

    Google Scholar 

  • Harrell, F. E. (2001). Regression modeling strategies, with applications to linear models, survival analysis and logistic regression. Berlin: Springer.

    Google Scholar 

  • Harun, S., Nor, N. I. A., & Kassim, A. H. M. (2002). Artificial neural network model for rainfall-runoff relationship. Jurnal Teknologi, 37(1), 1–12.

    Google Scholar 

  • Kakaei Lafdani, E., Moghaddam Nia, A., & Ahmadi, A. (2013). Daily suspended sediment load prediction using artificial neural networks and support vector machines. Journal of Hydrology, 478, 50–62.

    Article  Google Scholar 

  • Kalbus, E., Kalbacher, T., Kolditz, O., Krüger, E., Seegert, J., Röstel, G., Teutsch, G., Borchardt, D., & Krebs, P. (2012). Integrated water resources management under different hydrological, climatic and socio-economic conditions. Environmental Earth Sciences, 65(5), 1363–1366.

    Article  Google Scholar 

  • Kasabov, N. K. (1996). Foundations of neural networks, fuzzy systems, and knowledge engineering. Marcel Alencar.

  • Kaveh, K., Bui, M. D., & Rutschmann, P. (2017). A comparative study of three different learning algorithms applied to ANFIS for predicting daily suspended sediment concentration. International Journal of Sediment Research, 32(3), 340–350.

    Article  Google Scholar 

  • Kecman, V. (2001). Learning and soft computing: support vector machines, neural networks, and fuzzy logic models. Cambridge: MIT Press.

    Google Scholar 

  • Kisi, Ö. (2004). Multi-layer perceptrons with Levenberg-Marquardt training algorithm for suspended sediment concentration prediction and estimation. Hydrological Sciences Journal, 49(6), 37–41.

    Article  Google Scholar 

  • Kişi, Ö. (2007). Streamflow forecasting using different artificial neural network algorithms. Journal of Hydrologic Engineering, 12(5), 532–539.

    Article  Google Scholar 

  • Kisi, O., & Zounemat-Kermani, M. (2016). Suspended sediment modeling using neuro-fuzzy embedded fuzzy c-means clustering technique. Water Resources Management, 30(11), 3979–3994.

    Article  Google Scholar 

  • Lan, Y. (2014). Forecasting performance of support vector machine for the Poyang Lake’s water level. Water Science & Technology, 70(9), 1488–1495.

    Article  Google Scholar 

  • Li, B., Yang, G., Wan, R., Dai, X., & Zhang, Y. (2015). Comparison of random forests and other statistical methods for the prediction of lake water level: a case study of the Poyang Lake in China Bing. Hydrology Research, 47(S1), 69–83.

    Article  Google Scholar 

  • Liaw, A., & Wiener, M. (2003). Classification and regression by randomForest. R News, 2(3), 18–22.

    Google Scholar 

  • Licznar, P., & Nearing, M. A. (2003). Artificial neural networks of soil erosion and runoff prediction at the plot scale. Catena, 51(2), 89–114.

    Article  Google Scholar 

  • Lin, J., Cheng, C., & Chau, K. (2006). Using support vector machines for long-term discharge prediction. Hydrological Sciences Journal, 51(4), 599–612.

    Article  Google Scholar 

  • Maier, H. R., & Dandy, G. C. (1996). The use of artificial neural networks for the prediction of water quality parameters. Water Resources Research, 32(4), 1013–1022.

    Article  Google Scholar 

  • Maiti, S., & Tiwari, R. K. (2014). A comparative study of artificial neural networks, Bayesian neural networks and adaptive neuro-fuzzy inference system in groundwater level prediction. Environmental Earth Sciences, 71(7), 3147–3160.

    Article  Google Scholar 

  • Mason, J. C., Price, R. K., & Tem’Me, A. (1996). A neural network model of rainfall-runoff using radial basis functions. Journal of Hydraulic Research, 34(4), 537–548.

    Article  Google Scholar 

  • McCuen, R. H. (2002). Modelling hydrological change: statistical methods. Washington, D.C.: Lewis Publishers A.

    Google Scholar 

  • Minns, A. W., & Hall, M. J. (1996). Artificial neural networks as rainfall-runoff models. Hydrological Sciences Journal, 41(3), 399–417.

    Article  Google Scholar 

  • Moriasi, D. N., Arnold, J. G., Van Liew, M. V., Binger, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. American Society of Agricultural and Biological Engineers, 50(3), 885–900.

    Google Scholar 

  • Nagy, H. M., Watanabe, K., & Hirano, M. (2002). Prediction of sediment load concentration in rivers using artificial neural network model. Journal of Hydraulic Engineering, 128(6), 588–595.

    Article  Google Scholar 

  • Nourani, V., & Andalib, G. (2015). Daily and monthly suspended sediment load predictions using wavelet based artificial intelligence approaches. Journal of Mountain Science, 12(1), 85–100.

    Article  Google Scholar 

  • Nourani, V., Hosseini Baghanam, A., Adamowski, J., & Kisi, O. (2014). Applications of hybrid wavelet-artificial intelligence models in hydrology: a review. Journal of Hydrology, 514, 358–377.

    Article  Google Scholar 

  • Olyaie, E., Banejad, H., Chau, K. W., & Melesse, A. M. (2015). A comparison of various artificial intelligence approaches performance for estimating suspended sediment load of river systems: a case study in United States. Environmental Monitoring and Assessment, 187(4), 189.

    Article  Google Scholar 

  • Ouedraogo, I., Defourny, P., & Vanclooster, M. (2019). Application of random forest regression and comparison of its performance to multiple linear regression in modeling groundwater nitrate concentration at the African continent scale. Hydrogeology Journal, 27(3), 1081–1098.

    Article  CAS  Google Scholar 

  • Ouellet-Proulx, S., St-Hilaire, A., Courtenay, S. C., & Haralampides, K. A. (2016). Estimation of suspended sediment concentration in the Saint John River using rating curves and a machine learning approach. Hydrological Sciences Journal, 61(10), 1847–1860.

    Google Scholar 

  • Palani, S., Liong, S. Y., & Tkalich, P. (2008). An ANN application for water quality forecasting. Marine Pollution Bulletin, 56(9), 1586–1597.

    Article  CAS  Google Scholar 

  • Rai, R. K., & Mathur, B. S. (2008). Event-based sediment yield modeling using artificial neural network. Water Resources Management, 22(4), 423–441.

    Article  Google Scholar 

  • Rajaee, T., Mirbagheri, S. A., Zounemat-Kermani, M., & Nourani, V. (2009). Daily suspended sediment concentration simulation using ANN and neuro-fuzzy models. Science of the Total Environment, 407(17), 4916–4927.

    Article  CAS  Google Scholar 

  • Rajurkar, M. P., Kothyari, U. C., & Chaube, U. C. (2004). Modeling of the daily rainfall-runoff relationship with artificial neural network. Journal of Hydrology, 285, 96–113.

    Article  Google Scholar 

  • Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K., & Yoder, D. C. (1996). Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation. (Vol. 703). Washington, DC: United States Department of Agriculture.

  • Shiau, J.-T., & Chen, T.-J. (2015). Quantile regression-based probabilistic estimation scheme for daily and annual suspended sediment loads. Water Resources Management, 29(8), 2805–2818.

    Article  Google Scholar 

  • Singh, K. P., Basant, A., Malik, A., & Jain, G. (2009). Artificial neural network modeling of the river water quality-a case study. Ecological Modelling, 220(6), 888–895.

    Article  CAS  Google Scholar 

  • Solomatine, D., See, L. M., & Abrahart, R. J. (2008). Data-driven modelling: concepts, approaches and experiences. In Practical hydroinformatics (pp. 17–30). Berlin, Heidelberg: Springer.

    Chapter  Google Scholar 

  • Tayfur, G. (2002). Artificial neural networks for sheet sediment transport. Hydrological Sciences Journal, 47(6), 879–892.

    Article  Google Scholar 

  • Vafakhah, M. (2013). Comparison of cokriging and adaptive neuro-fuzzy inference system models for suspended sediment load forecasting. Arabian Journal of Geosciences, 6(8), 3003–3018.

    Article  Google Scholar 

  • Vapnik, V. (1995). The nature of statistical learning theory. Berlin: Springer Science & Business Media.

    Book  Google Scholar 

  • Wen, C., & Lee, C. (1998). A neural network approach to multiobjective optimization for water quality management in a river basin. Water Resources Research, 34(3), 427–436.

    Article  CAS  Google Scholar 

  • Wichmeier, W. H., & Smith, D. D. (1978). Predicting rainfall erosion loss: a guide to conservation planning. Agriculture handbook (USA).

  • Williams, J. R. (1975). Sediment-Yield prediction with Universal Equation using runoff energy factor. Present and Prospective Technology for Predicting Sediment Yields and Sources, ARS-S-40, US Department of Agriculture, Agriculture Research Service, pp. 244–252.

  • Zhu, Y.-M., Lu, X. X., & Zhou, Y. (2007). Suspended sediment flux modeling with artificial neural network: an example of the Longchuanjiang River in the Upper Yangtze Catchment, China. Geomorphology, 84(1–2), 111–125.

    Article  Google Scholar 

  • Zounemat-Kermani, M., Kişi, Ö., Adamowski, J., & Ramezani-Charmahineh, A. (2016). Evaluation of data driven models for river suspended sediment concentration modeling. Journal of Hydrology, 535, 457–472.

    Article  Google Scholar 

Download references

Acknowledgments

The author is grateful to the ministry of higher education and scientific research in Iraq for their support during this study. In addition, I would like to extend my gratitude to Dr. Rasul Khalaf from Al-Mustansiriya University-Baghdad for providing the sediment data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Al-Mukhtar.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Mukhtar, M. Random forest, support vector machine, and neural networks to modelling suspended sediment in Tigris River-Baghdad. Environ Monit Assess 191, 673 (2019). https://doi.org/10.1007/s10661-019-7821-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7821-5

Keywords

Profiles

  1. Mustafa Al-Mukhtar