Skip to main content

Advertisement

Log in

Chlorophyll-a, dissolved organic carbon, turbidity and other variables of ecological importance in river basins in southern Ontario and British Columbia, Canada

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Optical sensing of chlorophyll-a (chl-a), turbidity, and fluorescent dissolved organic matter (fDOM) is often used to characterize the quality of water. There are many site-specific factors and environmental conditions that can affect optically sensed readings; notwithstanding the comparative implication of different procedures used to measure these properties in the laboratory. In this study, we measured these water quality properties using standard laboratory methods, and in the field using optical sensors (sonde-based) at water quality monitoring sites located in four watersheds in Canada. The overall objective of this work was to explore the relationships among sonde-based and standard laboratory measurements of the aforementioned water properties, and evaluate associations among these eco-hydrological properties and land use, environmental, and ancillary water quality variables such as dissolved organic carbon (DOC) and total suspended solids (TSS). Differences among sonde versus laboratory relationships for chl-a suggest such relationships are impacted by laboratory methods and/or site specific conditions. Data mining analysis indicated that interactive site-specific factors predominately impacting chl-a values across sites were specific conductivity and turbidity (variables with positive global associations with chl-a). The overall linear regression predicting DOC from fDOM was relatively strong (R2 = 0.77). However, slope differences in the watershed-specific models suggest laboratory DOC versus fDOM relationships could be impacted by unknown localized water quality properties affecting fDOM readings, and/or the different standard laboratory methods used to estimate DOC. Artificial neural network analyses (ANN) indicated that higher relative chl-a concentrations were associated with low to no tree cover around sample sites and higher daily rainfall in the watersheds examined. Response surfaces derived from ANN indicated that chl-a concentrations were higher where combined agricultural and urban land uses were relatively higher.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • APHA. (1998). 10200H chlorophyll. In: standard methods for the examination of water and wastewater. In L. S. Clesceri, A. E. Greenberg, and A. D. Eaton (Eds.) (20th ed.). Washington, D.C.: American Public Health Association, American Water Works Association, Water Environment Federation.

    Google Scholar 

  • APHA (2012). Section 1060, Collection and Preservation of Samples. In: Standard Methods for the Examination of Water and Wastewater. In Eugene W. Rice, Rodger B. Baird, Andrew D. Eaton, and L. S. Clesceri (Eds.), (22nd ed., pp. 1360). Washington, D.C.: American Public Health Association, American Water Works Association, Water Environment Federation.

  • Arar, E. J. (1997a). Method 446.0: In vitro determination of chlorophylls a, b, c + c and pheopigments in 1 2 marine and freshwater algae by. In Visible spectrophotometry. Washington, DC: U.S. Environmental Protection Agency.

    Google Scholar 

  • Arar, E. J. (1997b). Method 447.0 - determination of chlorophylls a and b and identification of other pigments of interest in marine and freshwater algae using high performance liquid chromatography with visible wavelength detection. Washington, Dc: U.S. Environmental Protection Agency.

    Google Scholar 

  • Arar, E. J., & Collins, G. B. (1997). Method 445.0 in vitro determination of chlorophyll a and pheophytin Ain marine and freshwater algae by fluorescence. Washington, DC: U.S. Environmental Protection Agency.

    Google Scholar 

  • Arthington, Á. H., Naiman, R. J., Mcclain, M. E., & Nilsson, C. (2010). Preserving the biodiversity and ecological services of rivers: new challenges and research opportunities. Freshwater Biology, 55(1), 1–16.

    Article  Google Scholar 

  • Bowling, L. C., Ryan, D., Holliday, J., & Honeyman, G. (2013). Evaluation of in situ fluorometry to determine cyanobacterial abundance in the Murray and Lower Darling Rivers. Aurtalia. River Research and Applications, 29(8), 1059–1071. https://doi.org/10.1002/rra.2601.

    Article  Google Scholar 

  • Bowling, L. C., Zamyadi, A., & Henderson, R. K. (2016). Assessment of in situ fluorometry to measure cyanobacterial presence in water bodies with diverse cyanobacterial populations. Water Research, 105, 22–33. https://doi.org/10.1016/j.watres.2016.08.051.

    Article  CAS  Google Scholar 

  • Breiman, L., Freidman, J., Olshen, R., & Stone, C. (1984). Classification and Regression Trees. Pacific Grove: Wadsworth.

    Google Scholar 

  • Cârstea, E. M., Ghervase, L., Pavelescu, G., & Iojă, C. I. (2012). Correlation of dissolved organic matter fluorescence and several metals concentration in a freshwater system. Procedia Environmental Sciences, 14, 41–48. https://doi.org/10.1016/j.proenv.2012.03.005.

    Article  CAS  Google Scholar 

  • Chang, N. B., Imen, S., & Vannah, B. (2015). Remote sensing for monitoring surface water quality status and ecosystem state in relation to the nutrient cycle: a 40-year perspective. Critical Reviews in Environmental Science and Technology, 45(2), 101–166. https://doi.org/10.1080/10643389.2013.829981.

    Article  CAS  Google Scholar 

  • Chen, P., Pan, D., Mao, Z., & Tao, B. (2015). Detection of water quality parameters in Hangzhou Bay using a portable laser fluorometer. Marine Pollution Bulletin, 93(1–2), 163–171. https://doi.org/10.1016/j.marpolbul.2015.01.023.

    Article  CAS  Google Scholar 

  • Chen, W., Wilkes, G., Khan, I. U., Pintar, K. D., Thomas, J. L., Lévesque, C. A., Chapados, J. T., Topp, E., & Lapen, D. R. (2018). Aquatic bacterial communities associated with land use and environmental factors in agricultural landscapes using a metabarcoding approach. Frontiers in Microbiology, 9.

  • Cui, J. S., & Lv, P. Y. (2014). Turbidity effect on the fluorescence determination of chlorophyll-a in water. Applied Mechanics and Materials, 522(524), 60–63.

    Article  Google Scholar 

  • Dos Santos, A. C. A., Calijuri, M. C., Moraes, E. M., Adorno, M. A. T., Falco, P. B., Carvalho, D. P., et al. (2003). Comparison of three methods for chlorophyll determination: spectrophotometry and fluorimetry in samples containing pigment mixtures and spectrophotometry in samples with separate pigments through high performance liquid chromatography. Acta Limnologica Brasiliensia, (12), 15.

  • Environment and Climate Change Canada (1998). Fraser River action plan. http://publications.gc.ca/site/eng/9.805610/publication.html

  • Environment and Climate Change Canada (2018). Historical climate data. http://climate.weather.gc.ca/historical_data/search_historic_data_e.html Accessed summer fall 2018.

  • Exo Sonde User Manual. Advanced water quality monitoring platform. Item# 603789REF. Revision G. https://www.ysi.com/File%20Library/Documents/Manuals/EXO-User-Manual-Web.pdf.

  • Frey, S. K., Gottschall, N., Wilkes, G., Grégoire, D. S., Topp, E., Pintar, K. D. M., Sunohara, M., Marti, R., & Lapen, D. R. (2015). Rainfall-induced runoff from exposed streambed sediments: an important source of water pollution. Journal of Environmental Quality, 44(1), 236–247.

    Article  CAS  Google Scholar 

  • Government of Canada. (2015). FoodNet Canada: an overview. Available at: http://www.phac-aspc.gc.ca/foodnetcanada/overview-apercu-eng.php. Accessed on December, 2018.

  • Hall, K. J., & Schreier, H. (1996). Urbanization and agricultural intensification in the lower Fraser River valley: Impacts on water use and quality. [conference paper]. GeoJournal, 40(1–2), 135–146.

    Google Scholar 

  • Hambrook Berkman, J. A., and Canova, M. G. (2007). Algal biomass indicators (version 1.0): U.S. Geological Survey techniques of water-resources investigations, book 9, chap. A7, sec. 7.4, August, accessed [7 June 2017], from http://pubs.water.usgs.gov/twri9A/.

  • Isoyama, R., Taie, M., Kageyama, T., Miura, M., Maeda, A., Mori, A., & Lee, S. S. (2017). A feasibility study on the simultaneous sensing of turbidity and chlorophyll a concentration using a simple optical measurement method. Micromachines, 8(4), 112. https://doi.org/10.3390/mi8040112.

    Article  Google Scholar 

  • Kermavnar, J., & Vilhar, U. (2017). Canopy precipitation interception in urban forests in relation to stand structure. Urban Ecosystems, 20(6), 1373–1387.

    Article  Google Scholar 

  • Khamis, K., Bradley, C., Stevens, R., & Hannah, D. M. (2017). Continuous field estimation of dissolved organic carbon concentration and biochemical oxygen demand using dual-wavelength fluorescence, turbidity and temperature. Hydrological Processes, 31(3), 540–555. https://doi.org/10.1002/hyp.11040.

    Article  CAS  Google Scholar 

  • Köhler, J., Hachoł, J., & Hilt, S. (2010). Regulation of submersed macrophyte biomass in a temperate lowland river: interactions between shading by bank vegetation, epiphyton and water turbidity. Aquatic Botany, 92(2), 129–136.

    Article  Google Scholar 

  • Kovács, J., Tanos, P., Várbíró, G., Anda, A., Molnár, S., & Hatvani, I. G. (2017). The role of annual periodic behavior of water quality parameters in primary production – chlorophyll-a estimation. Ecological Indicators, 78, 311–321. https://doi.org/10.1016/j.ecolind.2017.03.002.

    Article  Google Scholar 

  • Lapen, D. R., Topp, G. C., Gregorich, E. G., Hayhoe, H. N., & Curnoe, W. E. (2001). Divisive field-scale associations between corn yields, management, and soil information. Soil and Tillage Research, 58, 193–206. https://doi.org/10.1016/S0167-1987(00)00168-9.

    Article  Google Scholar 

  • Lapen, D. R., Schmidt, P. J., Thomas, J. L., Edge, T. A., Flemming, C., Keithlin, J., Neumann, N., Pollari, F., Ruecker, N., Simhon, A., Topp, E., Wilkes, G., & Pintar, K. D. M. (2016). Towards a more accurate quantitative assessment of seasonal cryptosporidium infection risks in surface waters using species and genotype information. Water Research, 105, 625–637. https://doi.org/10.1016/j.watres.2016.08.023.

    Article  CAS  Google Scholar 

  • Liu, X., Zhang, Y., Shi, K., Zhu, G., Xu, H., & Zhu, M. (2014). Absorption and fluorescence properties of chromophoric dissolved organic matter: Implications for the monitoring of water quality in a large subtropical reservoir. Environmental Science and Pollution Research, 21(24), 14078–14090. https://doi.org/10.1007/s11356-014-3319-4.

    Article  CAS  Google Scholar 

  • Mizaikoff, B. (2003). Infrared optical sensors for water quality monitoring. Water Science and Technology, 47(2), 35–42.

    Article  CAS  Google Scholar 

  • Murphy, K. R., Butler, K. D., Spencer, R. G. M., Stedmon, C. A., Boehme, J. R., & Aiken, G. R. (2010). Measurement of dissolved organic matter fluorescence in aquatic environments: an interlaboratory comparison. Environmental Science and Technology, 44(24), 9405–9412. https://doi.org/10.1021/es102362t.

    Article  CAS  Google Scholar 

  • Murphy, K. R., Heery, B., Sullivan, T., Zhang, D., Paludetti, L., Lau, K. T., et al. (2015). A low-cost autonomous optical sensor for water quality monitoring. Talanta, 132, 520–527. https://doi.org/10.1016/j.talanta.2014.09.045.

    Article  CAS  Google Scholar 

  • Mushtaq, F., & Nee Lala, M. G. (2017). Remote estimation of water quality parameters of Himalayan lake (Kashmir) using Landsat 8 OLI imagery. Geocarto International, 32(3), 274–285. https://doi.org/10.1080/10106049.2016.1140818.

    Article  Google Scholar 

  • Niu, C., Zhang, Y., Zhou, Y., Shi, K., Liu, X., & Qin, B. (2014). The potential applications of real-time monitoring of water quality in a large shallow lake (Lake Taihu, China) using a chromophoric dissolved organic matter fluorescence sensor. Sensors, 14(7), 11580–11594. https://doi.org/10.3390/s140711580.

    Article  CAS  Google Scholar 

  • Pinckney, J., Papa, R., & Zingmark, R. (1994). Comparison of high-performance liquid chromatographic, spectrophotometric, and fluorometric methods for determining chlorophyll a concentrations in estaurine sediments. Journal of Microbiological Methods, 19(1), 59–66.

    Article  CAS  Google Scholar 

  • Pintar, K. D. M., Fazil, A., Pollari, F., Waltner-Toews, D., Charron, D. F., McEwen, S. A., & Walton, T. (2012). Considering the risk of infection by cryptosporidium via consumption of municipally treated drinking water from a surface water source in a southwestern Ontario community. Risk Analysis, 32(7), 1122–1138. https://doi.org/10.1111/j.1539-6924.2011.01742.x.

    Article  CAS  Google Scholar 

  • Rice, E. W., Baird, R., Eaton, A. D., Clesceri, L. S., & Bridgewater, L. (2012). Standard methods for the examination of water and wastewater. Washington, D.C.: American Public Health Association, American Water Works Association, Water Environment Federation.

    Google Scholar 

  • Rügner, H., Schwientek, M., Beckingham, B., Kuch, B., & Grathwohl, P. (2013). Turbidity as a proxy for total suspended solids (TSS) and particle facilitated transport in catchments. Environment and Earth Science, 69(2), 373–380. https://doi.org/10.1007/s12665-013-2307-1.

    Article  CAS  Google Scholar 

  • Ruhala, S. S., & Zarnetske, J. P. (2017). Using in-situ optical sensors to study dissolved organic carbon dynamics of streams and watersheds: a review. Science of the Total Environment, 575, 713–723. https://doi.org/10.1016/j.scitotenv.2016.09.113.

    Article  CAS  Google Scholar 

  • Rymszewicz, A., O'Sullivan, J. J., Bruen, M., Turner, J. N., Lawler, D. M., Conroy, E., & Kelly-Quinn, M. (2017). Measurement differences between turbidity instruments, and their implications for suspended sediment concentration and load calculations: a sensor inter-comparison study. Journal of Environmental Management, 199, 99–108. https://doi.org/10.1016/j.jenvman.2017.05.017.

    Article  CAS  Google Scholar 

  • Song, K., Li, L., Tedesco, L., Clercin, N., Hall, B., Li, S., Shi, K., Liu, D., & Sun, Y. (2013). Remote estimation of phycocyanin (PC) for inland waters coupled with YSI PC fluorescence probe. Environmental Science and Pollution Research, 20(8), 5330–5340. https://doi.org/10.1007/s11356-013-1527-y.

    Article  CAS  Google Scholar 

  • Statistica, 2018. Statistica Documentation. STATISTICA Automated neural networks (SANN) - neural networks: an overview. (i) performing regression with 4-Bar linkage data. i). http://documentation.statsoft.com/STATISTICAHelp.aspx?path=SANN/Overview/SANNNeuralNetworksAnOverview ; ii) http://documentation.statsoft.com/STATISTICAHelp.aspx?path=SANN/Examples/SANNExample1PerformingRegressionwith4BarLinkageData Accessed Fall 2018.

  • Steinberg, D., & Colla, P. (1995). CART: tree-structured non parametric data analysis. San Diego, CA: Salford Systems.

    Google Scholar 

  • Tabacchi, E., Lambs, L., Guilloy, H., Planty-Tabacchi, A. M., Muller, E., & Decamps, H. (2000). Impacts of riparian vegetation on hydrological processes. Hydrological Processes, 14(16–17), 2959–2976.

    Article  Google Scholar 

  • Thomas, J., Pintar, K., Wallis, P., & Neumann, N. (2016). Using host-specificity of cryptosporidium to understand contaminant sources, seasonality, and human health risk in three watersheds of differing land-use. Journal of Environmental Protection, 7, 372–381. https://doi.org/10.4236/jep.2016.73033.

    Article  CAS  Google Scholar 

  • Trifu, M. C., & Daradici, V. (2014). New monitoring technique for rapid investigation of nitrates pollution in aquatic systems. Proc. IAHS, 364, 481–485. https://doi.org/10.5194/piahs-364-481-2014.

    Article  Google Scholar 

  • Tuna, G., Arkoc, O., & Gulez, K. (2013). Continuous monitoring of water quality using portable and low-cost approaches. International Journal of Distributed Sensor Networks, 9(6), 249598. https://doi.org/10.1155/2013/249598.

    Article  Google Scholar 

  • Veliz, M., Brock, H., & Neary, J. (2006). Ausable Bayfield Conservation Authority Watershed Report Card 2007 (p. 104). Exeter, Ontario: Ausable Bayfield Conservation Authority.

    Google Scholar 

  • Wade, A. J., Palmer-Felgate, E. J., Halliday, S. J., Skeffington, R. A., Loewenthal, M., Jarvie, H. P., Bowes, M. J., Greenway, G. M., Haswell, S. J., Bell, I. M., Joly, E., Fallatah, A., Neal, C., Williams, R. J., Gozzard, E., & Newman, J. R. (2012). Hydrochemical processes in lowland rivers: insights from in situ, high-resolution monitoring. Hydrology and Earth System Sciences, 16(11), 4323–4342. https://doi.org/10.5194/hess-16-4323-2012.

    Article  Google Scholar 

  • Waller, M. E., Bramburger, A. J., & Cumming, B. F. (2016). Bi-weekly changes in phytoplankton abundance in 25 tributaries of Lake St. Francis, Canada: evaluating the occurrence of nuisance and harmful algae. [article]. Journal of Great Lakes Research, 42(5), 1049–1059. https://doi.org/10.1016/j.jglr.2016.07.003.

    Article  Google Scholar 

  • Wetzel, R. G. (1983). Limnology. Philadelphia, PA: Saunders College Publishing.

    Google Scholar 

  • Wilkes, G., Edge, T. A., Gannon, V. P. J., Jokinen, C., Lyautey, E., Medeiros, D., et al. (2009). Seasonal relationships among indicator bacteria, pathogenic bacteria, cryptosporidium oocysts, giardia cysts, and hydrological indices for surface waters within an agricultural landscape. Water Research, 43(8), 2209–2223. https://doi.org/10.1016/j.watres.2009.01.033.

    Article  CAS  Google Scholar 

  • Wilkes, G., Edge, T. A., Gannon, V. P. J., Jokinen, C., Lyautey, E., Neumann, N. F., Ruecker, N., Scott, A., Sunohara, M., Topp, E., & Lapen, D. R. (2011). Associations among pathogenic bacteria, parasites, and environmental and land use factors in multiple mixed-use watersheds. Water Research, 45(18), 5807–5825. https://doi.org/10.1016/j.watres.2011.06.021.

    Article  CAS  Google Scholar 

  • Wilkes, G., Ruecker, N., Neumann, N., Gannon, V., Jokinen, C., Sunohara, M., Topp, E., Pintar, K., Edge, T., & Lapen, D. (2013). Spatiotemporal analysis of cryptosporidium species/genotypes and relationships with other zoonotic pathogens in surface water from mixed-use watersheds. Applied and Environmental Microbiology, 79(2), 434–448.

    Article  CAS  Google Scholar 

  • YSI (2010). Calibration, maintenance and troubleshooting tips for YSI 6-series sondes and sensors. (pp. 39): YSI.

  • Zamyadi, A., Choo, F., Newcombe, G., Stuetz, R., & Henderson, R. K. (2016). A review of monitoring technologies for real-time management of cyanobacteria: recent advances and future direction. TrAC Trends in Analytical Chemistry, 85(Part A), 83–96. https://doi.org/10.1016/j.trac.2016.06.023.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the Ausable-Bayfield and the South Nation Conservation Authorities for field support and collaboration. We would also like to thank Lyne Sabourin (Agriculture and Agri-Food Canada (AAFC)) for supporting coordination of field activities in Southern Ontario, and Weifan Lu, Yigit Keskinler, and Mike Ballard of Algonquin College, Ottawa for GIS analytical support. Contributions to support this work were provided by AAFC and the Build in Canada Innovation Program and Fluvial Systems Research Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. R. Lapen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 701 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zolfaghari, K., Wilkes, G., Bird, S. et al. Chlorophyll-a, dissolved organic carbon, turbidity and other variables of ecological importance in river basins in southern Ontario and British Columbia, Canada. Environ Monit Assess 192, 67 (2020). https://doi.org/10.1007/s10661-019-7800-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7800-x

Keywords

Navigation