Skip to main content

Advertisement

Log in

Temporal evolution of submicron particles during extreme fireworks

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Evolution of submicron particles in terms of particle number concentration and mobility-equivalent diameter was measured during Diwali festival–specific intensive pyrotechnic displays in Varanasi over central Indo-Gangetic Plain (IGP). A scanning mobility particle sizer coupled with an optical particle sizer was used to fit in an overlapping size range, and particle number concentration was analyzed to have an insight into the new particle formation and subsequent evolution of particles from nucleation to accumulation mode. Further, variation in black carbon (BC) concentration and aerosol ionic composition was measured simultaneously. Frequent fluctuation in particle number concentration in and around Diwali festival was evidenced, primarily influenced by local emission sources and meteorology, with three distinct peaks in number concentrations (dN/dlogDp, 3.1–4.5 × 104 cm3) coinciding well with peak firework emission period (18:00–23:00 h). Submicron particle size distribution revealed a single peak covering a size range of 80–130 nm, and for all instances, number concentration maximum coincided with geometric mean minimum, indicating the emission primarily in the ultrafine range (< 0.1 μm). Interestingly, during peak firework emissions, besides rise in accumulation mode, an event of new particle formation was identified with increase in nucleation and small Aitken mode, before being dispersed to background aerosols. On an integral scale, a clear distinction was noted between a normal and an episodic event, with a definite shift in the formation of ultrafine particles compared with the accumulation mode. The BC diurnal profile was typical, with a prominent nocturnal peak (12.0 ± 3.9 μg m-3) corresponding to a decrease in the boundary layer height. A slight variation in maximum BC concentration (16.8 μg m-3) was noted in the night of the event coinciding well with firework emissions. An increase in some specific ionic species was also noted in combination with an increase in the overall cation to anion ratio, which was explained in terms of heterogeneous transformation of NOx and catalytic conversion of SO2.

Time-resolved evolution of particle size distribution during normal and episodic events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The VIIRS land surface reflectance is available at NASA’s EOSDIS Worldview.

References

  • Banerjee, T., Murari, V., Kumar, M., & Raju, M. P. (2015). Source apportionment of airborne particulates through receptor modeling: Indian scenario. Atmospheric Research, 164, 167–187.

    Article  Google Scholar 

  • Becker, J. M., Iskandrian, S., & Conkling, J. (2000). Fatal and near-fatal asthma in children exposed to fireworks. Annals of Allergy, Asthma & Immunology, 85, 512–513.

    Article  CAS  Google Scholar 

  • Burnett, R., Chen, H., Szyszkowicz M et al. (2018). Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proc Natl Acad Sci USA, 115, 9592–9597.

  • Burney, J., & Ramanathan, V. (2014). Recent climate and air pollution impacts on Indian agriculture. PNAS, 11, 16319–16324.

    Article  Google Scholar 

  • Cheng, L., Peake, E., & Davis, A. (1987). The rate of SO2 to sulfate particle formation in an air parcel from an oil sands extraction plant plume. JAPCA, 37, 163–167.

    Article  CAS  Google Scholar 

  • Dal Maso, M., Kulmala, M., Riipinen, I., Wagner, R., Hussein, T., Aalto, P. P., & Lehtinen, K. E. (2005). Formation and growth of fresh atmospheric aerosols: eight years of aerosol size distribution data from SMEAR II, Hyytiala, Finland. Boreal Environment Research, 10, 323–336.

    Google Scholar 

  • Deka, P., & Hoque, R. R. (2014). Diwali fireworks: early signs of impact on PM10 properties of rural Brahmaputra valley. Aerosol and Air Quality Research, 14, 1752–1762.

    Article  CAS  Google Scholar 

  • Devara, P. C., Vijayakumar, K., Safai, P. D., Made, P. R., & Rao, P. S. (2015). Celebration-induced air quality over a tropical urban station, Pune, India. Atmospheric Pollution Research, 6, 511–520.

    Article  CAS  Google Scholar 

  • Gettelman, A., Morrison, H., Terai, C. R., & Wood, R. (2013). Microphysical process rates and global aerosol–cloud interactions. Atmospheric Chemistry and Physics, 13, 9855–9867.

    Article  Google Scholar 

  • Goel, A., & Kumar, P. (2015). Characterisation of nanoparticle emissions and exposure at traffic intersections through fast–response mobile and sequential measurements. Atmospheric Environment, 107, 374–390.

    Article  CAS  Google Scholar 

  • Gong, X., Zhang, C., Chen, H., Nizkorodov, S. A., Chen, J., & Yang, X. (2016). Size distribution and mixing state of black carbon particles during a heavy air pollution episode in Shanghai. Atmospheric Chemistry and Physics, 16, 5399–5411.

    Article  CAS  Google Scholar 

  • Hansen, A. D. A., Rosen, H., & Novakov, T. (1984). The aethalometer—an instrument for the real-time measurement of optical absorption by aerosol particles. The Science of the Total Environment, 36, 191–196.

    Article  CAS  Google Scholar 

  • Jing, H., Li, Y. F., Zhao, J., Li, B., Sun, J., Chen, R., & Chen, C. (2014). Wide-range particle characterization and elemental concentration in Beijing aerosol during the 2013 Spring Festival. Environmental Pollution, 192, 204–211.

    Article  CAS  Google Scholar 

  • Joshi, M., Khan, A., Anand, S., & Sapra, B. K. (2016). Size evolution of ultrafine particles: Differential signatures of normal and episodic events. Environmental Pollution, 208, 354–360.

    Article  CAS  Google Scholar 

  • Kumar, M., Singh, R. S., and Banerjee, T. (2015). Associating airborne particulates and human health: exploring possibilities: comment on: Kim, Ki-Hyun, Kabir, E. and Kabir, S. 2015. A review on the human health impact of airborne particulate matter. Environment International 74 (2015) 136-143. Environment international, 84, 201. 

  • Kumar, M., Singh, R. K., Murari, V., Singh, A. K., Singh, R. S., & Banerjee, T. (2016). Fireworks induced particle pollution: a spatio-temporal analysis. Atmospheric Research, 180, 78–91.

    Article  CAS  Google Scholar 

  • Kumar, M., Raju, M. P., Singh, R. K., Singh, A. K., Singh, R. S., & Banerjee, T. (2017a). Wintertime characteristics of aerosols over middle Indo-Gangetic Plain: vertical profile, transport and radiative forcing. Atmospheric Research, 183, 268–282.

    Article  CAS  Google Scholar 

  • Kumar, M., Raju, M. P., Singh, R. S., & Banerjee, T. (2017b). Impact of drought and normal monsoon scenarios on aerosol induced radiative forcing and atmospheric heating in Varanasi over middle Indo-Gangetic Plain. Journal of Aerosol Science, 113, 95–107.

    Article  CAS  Google Scholar 

  • Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., & Pozzer, A. (2015). The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature, 525, 367–371.

    Article  CAS  Google Scholar 

  • Lin, C. C., Huang, K. L., Chen, H. L., Tsai, J. H., Chiu, Y. P., Lee, J. T., & Chen, S. J. (2014). Influences of beehive firework displays on ambient fine particles during the Lantern Festival in the YanShuei area of southern Taiwan. Aerosol and Air Quality Research, 14(7), 1998–2009.

    Article  CAS  Google Scholar 

  • Liu, D. Y., Rutherford, D., Kinsey, M., & Prather, K. A. (1997). Real-time monitoring of pyrotechnically derived aerosol particles in the troposphere. Analytical Chemistry, 69, 1808–1814.

    Article  CAS  Google Scholar 

  • Mhawish, A., Banerjee, T., Broday, D. M., Misra, A., & Tripathi, S. N. (2017). Evaluation of MODIS Collection 6 aerosol retrieval algorithms over Indo-Gangetic Plain: implications of aerosols types and mass loading. Remote Sensing of Environment, 201, 297–313.

    Article  Google Scholar 

  • Mhawish, A., Kumar, M., Mishra, A.K., Srivastava, P.K., Banerjee, T. (2018). Remote sensing of aerosols from space: retrieval of properties and applications. In. Remote Sensing of Aerosols, Clouds, and Precipitation. Elsevier Inc, 1-38. https://doi.org/10.1016/B978-0-12-810437-8.00003-7.

  • Moreno, T., Querol, X., Alastuey, A., Minguillón, M. C., Pey, J., Rodriguez, S., & Gibbons, W. (2007). Recreational atmospheric pollution episodes: inhalable metalliferous particles from firework displays. Atmospheric Environment, 41, 913–922.

    Article  CAS  Google Scholar 

  • Murari, V., Kumar, M., Barman, S. C., & Banerjee, T. (2015). Temporal variability of MODIS aerosol optical depth and chemical characterization of airborne particulates in Varanasi, India. Environmental Science and Pollution Research, 22, 1329–1343.

    Article  CAS  Google Scholar 

  • Murari, V., Kumar, M., Singh, N., Singh, R. S., & Banerjee, T. (2016). Particulate morphology and elemental characteristics: variability at middle Indo-Gangetic Plain. Journal of Atmospheric Chemistry, 73, 165–179.

    Article  CAS  Google Scholar 

  • Murari, V., Kumar, M., Mhawish, A., Barman, S. C., & Banerjee, T. (2017). Airborne particulate in Varanasi over middle Indo-Gangetic Plain: variation in particulate types and meteorological influences. Environmental Monitoring and Assessment, 189, 157–171.

    Article  Google Scholar 

  • Perrino, C., Tiwari, S., Catrambone, M., Dalla Torre, S., Rantica, E., & Canepari, S. (2011). Chemical characterization of atmospheric PM in Delhi, India, during different periods of the year including Diwali festival. Atmospheric Pollution Research, 2, 418–427.

    Article  CAS  Google Scholar 

  • Ramanathan, V. C. P. J., Crutzen, P. J., Kiehl, J. T., & Rosenfeld, D. (2001). Aerosols, climate, and the hydrological cycle. Science, 294, 2119–2124.

    Article  CAS  Google Scholar 

  • Retama, A., Neria-Hernández, A., Jaimes-Palomera, M., Rivera-Hernández, O., Sánchez-Rodríguez, M., López-Medina, A., & Velasco, E. (2019). Fireworks: a major source of inorganic and organic aerosols during Christmas and New Year in Mexico city. Atmospheric Environment: X, 2, 100013.

    Article  Google Scholar 

  • Sarkar, S., Khillare, P. S., Jyethi, D. S., Hasan, A., & Parween, M. (2010). Chemical speciation of respirable suspended particulate matter during a major firework festival in India. Journal of Hazardous Materials, 184, 321–330.

    Article  CAS  Google Scholar 

  • Seidel, D. J., & Birnbaum, A. N. (2015). Effects of Independence Day fireworks on atmospheric concentrations of fine particulate matter in the United States. Atmospheric Environment, 115, 192–198.

    Article  CAS  Google Scholar 

  • Sen, A., Abdelmaksoud, A. S., Ahammed, Y. N., Banerjee, T., Bhat, M. A., Chatterjee, A., & Gadi, R. (2017). Variations in particulate matter over Indo-Gangetic Plains and Indo-Himalayan Range during four field campaigns in winter monsoon and summer monsoon: role of pollution pathways. Atmospheric Environment, 154, 200–224.

    Article  CAS  Google Scholar 

  • Sharma, S. K., Kumar, M., Rohtash, Gupta, N. C., Saraswati, Saxena, M., & Mandal, T. K. (2014). Characteristics of ambient ammonia over Delhi, India. Meteorology and Atmospheric Physics, 124, 67–82.

    Article  Google Scholar 

  • Singh, R. P., Dey, S., & Holben, B. (2003). Aerosol behaviour in Kanpur during Diwali festival. Current Science, 84, 1302–1304.

    Google Scholar 

  • Singh, N., Mhawish, A., Deboudt, K., Singh, R. S., & Banerjee, T. (2017). Organic aerosols over Indo-Gangetic Plain: Sources, distributions and climatic implications. Atmospheric Environment, 157, 59–74.

    Article  CAS  Google Scholar 

  • Thakur, B., Chakraborty, S., Debsarkar, A., Chakrabarty, S., & Srivastava, R. C. (2010). Air pollution from fireworks during festival of lights (Deepawali) in Howrah, India-a case study. Atmosfera, 23, 347–365.

    CAS  Google Scholar 

  • Tritscher, T., Koched, A., Han, H. S., Filimundi, E., Johnson, T., Elzey, S., & Bischof, O. F. (2015). Multi-instrument manager tool for data acquisition and merging of optical and electrical mobility size distributions. In Journal of Physics: Conference Series (Vol. 617, No. 1, p. 012013). IOP Publishing.

  • Vecchi, R., Bernardoni, V., Cricchio, D., D’Alessandro, A., Fermo, P., Lucarelli, F., & Valli, G. (2008). The impact of fireworks on airborne particles. Atmospheric Environment, 42, 1121–1132.

    Article  CAS  Google Scholar 

  • Virkkula, A., Mäkelä, T., Hillamo, R., Yli-Tuomi, T., Hirsikko, A., Hämeri, K., & Koponen, I. K. (2007). A simple procedure for correcting loading effects of aethalometer data. Journal of the Air & Waste Management Association, 57, 1214–1222.

    Article  Google Scholar 

  • Wang, Y., Zhuang, G., Xu, C., & An, Z. (2007). The air pollution caused by the burning of fireworks during the lantern festival in Beijing. Atmospheric Environment, 41, 417–431.

    Article  CAS  Google Scholar 

  • Wen, L., & Chen, J. (2013). Severe aerosol pollution derived from fireworks: a case in Jinan, China. JSM Environmental Science & Ecology, 1, 1004.

    Google Scholar 

  • Yamada, M., Takaya, M., & Ogura, I. (2015). Performance evaluation of newly developed portable aerosol sizers used for nanomaterial aerosol measurements. Industrial Health, 2014–0243.

  • Zhang, M., Wang, X., Chen, J., Cheng, T., Wang, T., Yang, X., & Chen, C. (2010). Physical characterization of aerosol particles during the Chinese New Year’s firework events. Atmospheric Environment, 44, 5191–5198.

    Article  CAS  Google Scholar 

  • Zhao, S., Yu, Y., Yin, D., & He, J. (2017). Effective density of submicron aerosol particles in a typical valley city, western China. Atmospheric Pollution Research, 17, 1–13.

    CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Bhabha Atomic Research Centre, Mumbai (No. 2013/36/67-BRNS/0577). Black carbon was monitored under Aerosol Radiative Forcing over India (ARFI) scheme (P-32-13) financed by Indian Space Research Organization, Thiruvananthapuram. MK acknowledges the Council for Scientific and Industrial Research (CSIR) for Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tirthankar Banerjee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, S.K., Kumar, M., Sharma, Y. et al. Temporal evolution of submicron particles during extreme fireworks. Environ Monit Assess 191, 576 (2019). https://doi.org/10.1007/s10661-019-7735-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7735-2

Keywords

Navigation