Angiospermic plant dispersal profile of India—a maiden analysis

Abstract

Plant–disperser relationship is a mutual approach that regulates the species composition and habitat diversity. Here, we unfold the dispersal profile of India and provide comprehensive information on plant–disperser relationships, emphasising on plant longevities (annual, biennial, and perennial), plant life forms (tree, shrub, herb, liana), and vegetation types. The floral data were collected from a national database, and the dispersal information of 3301 geo-tagged plant species was gathered. The plant dispersal types were mainly (1) abiotic (hydrochory—water, anemochory—wind) and (2) biotic (endozoochory—internal gut, epizoochory—adherence to external surface, anthropochory—human, ornithochory—bird, myrmecochory—insect, and chirepterochory—bat) that included five dispersal modes, i.e. monochory (single), dichory (double), trichory (triple), quadrichory (four), and quintuchory (five). The generalised linear model was utilised to evaluate plant–disperser relationships. Monochory could explain variances of 56.8%, 51.2%, and 45.1% in perennials, annuals, and biennials, and 45.3%, 46.3%, 39.4%, and 47.7% for trees, shrubs, herbs, and lianas, respectively. Monochory has more significant influence on all major vegetation types, with at least 40% variance explanation. Anemochory, the dispersal by wind factor, was found to exercise by most plants. The life form wise analytics revealed inclination of multiple modes of dispersal for herbs with abiotic factors might be due to lighter weight, followed by trees with biotic dispersers could be owing to large size seeds. The same trend was reported from herb-dominant grassland where abiotic factors mostly contribute to dispersal, whereas the tree-dominant vegetation types exhibit dispersal primarily due to biotic means. This study provides a synoptic diagnosis to understand the dispersal profile of India, which has been an understudied domain.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Arnold, J. F. (1955). Plant life-form classification and its use in evaluating range conditions and trend. Journal of Range Management, 8(4), 176–181.

    Google Scholar 

  2. Baeten, L., Davies, T. J., Verheyen, K., Van Calster, H., & Vellend, M. (2015). Disentangling dispersal from phylogeny in the colonization capacity of forest understorey plants. Journal of Ecology, 103(1), 175–183.

    Google Scholar 

  3. Baker, H. G. (1972). Seed weight in relation to environmental conditions in California. Ecology, 53(6), 997–1010.

    Google Scholar 

  4. Bascompte, J., Jordano, P., & Olesen, J. M. (2006). Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science, 312(5772), 431–433.

    CAS  Google Scholar 

  5. Bawa, K. S. (1995). Pollination, seed dispersal and diversification of angiosperms. Trends in Ecology & Evolution, 10(8), 311–312.

    CAS  Google Scholar 

  6. Bhatt, P., Pradhan, N. M., & Wegge, P. (2011). Seed dispersal by megaherbivores: do Asian elephants disperse Mallotus philippinensis, a main food tree in northern India and Nepal? Journal of Natural History, 45(15–16), 915–921.

    Google Scholar 

  7. Champion, H. G., & Seth, S. K. (1968). A revised survey of forest types of India. New Delhi: Manager of Publications, Government of India.

    Google Scholar 

  8. Chatterjee, S., & Basu, P. (2015). Avian frugivory and seed dispersal of a large fruited tree in an Indian moist deciduous forest. Acta Oecologica, 65, 32–40.

    Google Scholar 

  9. Chust, G., Pérez-Haase, A., Chave, J., & Pretus, J. L. (2006). Floristic patterns and plant traits of Mediterranean communities in fragmented habitats. Journal of Biogeography, 33(7), 1235–1245.

    Google Scholar 

  10. Comita, L. S., Uriarte, M., Thompson, J., Jonckheere, I., Canham, C. D., & Zimmerman, J. K. (2009). Abiotic and biotic drivers of seedling survival in a hurricane-impacted tropical forest. Journal of Ecology, 97(6), 1346–1359.

    Google Scholar 

  11. Cook, L. G., & Crisp, M. D. (2005). Directional asymmetry of long-distance dispersal and colonization could mislead reconstructions of biogeography. Journal of Biogeography, 32(5), 741–754.

    Google Scholar 

  12. David, J. P., Manakadan, R., & Ganesh, T. (2015). Frugivory and seed dispersal by birds and mammals in the coastal tropical dry evergreen forests of southern India: a review. Tropical Ecology, 56(1), 41–55.

    Google Scholar 

  13. de Jager, M., Kaphingst, B., Janse, E. L., Buisman, R., Rinzema, S. G., & Soons, M. B. (2019). Seed size regulates plant dispersal distances in flowing water. Journal of Ecology, 107(1), 307–317.

    Google Scholar 

  14. Dexter, K. G. (2010). The influence of dispersal on macroecological patterns of Lesser Antillean birds. Journal of Biogeography, 37(11), 2137–2147.

    Google Scholar 

  15. Dogan, H. M., & Dogan, M. (2006). A new approach to diversity indices–modeling and mapping plant biodiversity of Nallihan (A3-Ankara/Turkey) forest ecosystem in frame of geographic information systems. Biodiversity and Conservation, 15(3), 855–878.

    Google Scholar 

  16. Drezner, T. D., Fall, P. L., & Stromberg, J. C. (2001). Plant distribution and dispersal mechanisms at the Hassayampa River Preserve, Arizona, USA. Global Ecology and Biogeography, 10(2), 205–217.

    Google Scholar 

  17. Eriksson, O., & Bremer, B. (1991). Fruit characteristics, life forms, and species richness in the plant family Rubiaceae. The American Naturalist, 138(3), 751–761.

    Google Scholar 

  18. Forget, P. M., Dennis, A. J., Mazer, S. J., Jansen, P. A., Kitamura, S., Lambert, J. E., et al. (2007). Seed allometry and disperser assemblages in tropical rainforests: a comparison of four floras on different continents (Seed dispersal: theory and its application in a changing world) (pp. 5–36). Wallingford: CAB International Publishing.

    Google Scholar 

  19. Gallagher, R. V., Beaumont, L. J., Hughes, L., & Leishman, M. R. (2010). Evidence for climatic niche and biome shifts between native and novel ranges in plant species introduced to Australia. Journal of Ecology, 98(4), 790–799.

    Google Scholar 

  20. Getzin, S., Wiegand, T., Wiegand, K., & He, F. (2008). Heterogeneity influences spatial patterns and demographics in forest stands. Journal of Ecology, 96(4), 807–820.

    Google Scholar 

  21. Harms, K. E., Condit, R., Hubbell, S. P., & Foster, R. B. (2001). Habitat associations of trees and shrubs in a 50-ha neotropical forest plot. Journal of Ecology, 89(6), 947–959.

    Google Scholar 

  22. Hart, R. (1977). Why are biennials so few? The American Naturalist, 111(980), 792–799.

    Google Scholar 

  23. Heinken, T., & Raudnitschka, D. (2002). Do wild ungulates contribute to the dispersal of vascular plants in central European forests by epizoochory? A case study in NE Germany. Forstwissenschaftliches Centralblatt vereinigt mit Tharandter forstliches Jahrbuch, 121(4), 179–194.

    Google Scholar 

  24. Holmes, M. A., & Matlack, G. R. (2019). Spatial structure develops early in forest herb populations, controlled by dispersal and life cycle. Oecologia, 1–20.

  25. Howe, H. F., & Smallwood, J. (1982). Ecology of seed dispersal. Annual Review of Ecology and Systematics, 13(1), 201–228.

    Google Scholar 

  26. Hubbell, S. P. (2001). The unified neutral theory of biodiversity and biogeography (MPB-32). Princeton University Press.

  27. Hubbell, S. P. (1997). A unified theory of biogeography and relative species abundance and its application to tropical rain forests and coral reefs. Coral reefs, 16(1), S9-S21.

    Google Scholar 

  28. Jara-Guerrero, A., De la Cruz, M., Espinosa, C. I., Méndez, M., & Escudero, A. (2015). Does spatial heterogeneity blur the signature of dispersal syndromes on spatial patterns of woody species? A test in a tropical dry forest. Oikos, 124(10), 1360–1366.

  29. Mahanand, S., & Behera, M. D. (2018). Understanding the Indian mainland–island biogeography through plant dispersal mechanism. Biodiversity and Conservation, 1–22.

  30. Mahanand, S., Behera, M. D., & Roy, P. S. (2017). Plant dispersal profile of Indian tropical sub-continent on the basis of species commonality. Tropical Ecology, 58(2), 357–368.

    Google Scholar 

  31. Mittermeier, R. A. (1997). Megadiversity: Earth’s biologically wealthiest nations. Agrupacion Sierra Madre.

  32. Moles, A. T., Falster, D. S., Leishman, M. R., & Westoby, M. (2004). Small-seeded species produce more seeds per square metre of canopy per year, but not per individual per lifetime. Journal of Ecology, 92(3), 384–396.

    Google Scholar 

  33. Montoya, D., Zavala, M. A., Rodríguez, M. A., & Purves, D. W. (2008). Animal versus wind dispersal and the robustness of tree species to deforestation. Science, 320(5882), 1502–1504.

    CAS  Google Scholar 

  34. Muñoz, J., Felicísimo, Á. M., Cabezas, F., Burgaz, A. R., & Martínez, I. (2004). Wind as a long-distance dispersal vehicle in the Southern Hemisphere. Science, 304(5674), 1144–1147.

    Google Scholar 

  35. Nathan, R., Horn, H. S., Chave, J., & Levin, S. A. (2002). Mechanistic models for tree seed dispersal by wind in dense forests and open landscapes. Seed dispersal and frugivory: Ecology, evolution and conservation, 69–82.

  36. Nautiyal, M., Nautiyal, B., & Prakash, V. (2001). Phenology and growth form distribution in an alpine pasture at Tungnath, Garhwal, Himalaya. Mountain Research and Development, 21(2), 168–175.

    Google Scholar 

  37. Nelder, J. A., & Wedderburn, R. W. (1972). Generalized linear models. Journal of the Royal Statistical Society: Series A (General), 135(3), 370–384.

    Google Scholar 

  38. Nepstad, D. C., Uhl, C., Pereira, C. A., & Da Silva, J. M. C. (1996). A comparative study of tree establishment in abandoned pasture and mature forest of eastern Amazonia. Oikos, 25–39.

  39. Osuri, A. M., Chakravarthy, D., Mudappa, D., Raman, T. S., Ayyappan, N., Muthuramkumar, S., et al. (2017). Successional status, seed dispersal mode and overstorey species influence tree regeneration in tropical rain-forest fragments in Western Ghats, India. Journal of Tropical Ecology, 33(4), 270–284.

    Google Scholar 

  40. Page, N. V., & Shanker, K. (2018). Environment and dispersal influence changes in species composition at different scales in woody plants of the Western Ghats, India. Journal of Vegetation Science, 29(1), 74–83.

    Google Scholar 

  41. Penn, H. J., & Crist, T. O. (2018). From dispersal to predation: a global synthesis of ant–seed interactions. Ecology and Evolution, 8(18), 9122–9138.

    Google Scholar 

  42. Ram, J., & Arya, P. (1991). Plant forms and vegetation analysis of an alpine meadow of Central Himalaya, India. Proceedings of the Indian National Science Academy. Part B Biological sciences, 57(5), 311–318.

    Google Scholar 

  43. Raunkiær, C., & Stowe, E. (1936). Recherches statistiques sur les formations végétales: United States Forest Service, Division of Silvics.

  44. Roy, P., Kushwaha, S., Murthy, M., Roy, A., Kushwaha, D., Reddy, C., et al. (2012). Biodiversity characterisation at landscape level: national assessment. Indian institute of remote sensing, Dehradun, India.

  45. Roy, P. S., Behera, M. D., Murthy, M., Roy, A., Singh, S., Kushwaha, S., et al. (2015). New vegetation type map of India prepared using satellite remote sensing: comparison with global vegetation maps and utilities. International Journal of Applied Earth Observation and Geoinformation, 39, 142–159.

    Google Scholar 

  46. Silvertown, J. W. (1981). Seed size, life span, and germination date as coadapted features of plant life history. The American Naturalist, 118(6), 860–864.

    Google Scholar 

  47. Smith, H. B. (1927). Annual versus biennial growth habit and its inheritance in Melilotus alba. American Journal of Botany, 14(3), 129–146.

    Google Scholar 

  48. Tabarelli, M., & Mantovani, W. (1999). A regeneração de uma floresta tropical montana após corte e queima (São Paulo-Brasil). Revista Brasileira de Biologia, 59(2), 239–250.

    Google Scholar 

  49. Tabarelli, M., & Peres, C. A. (2002). Abiotic and vertebrate seed dispersal in the Brazilian Atlantic forest: implications for forest regeneration. Biological Conservation, 106(2), 165–176.

    Google Scholar 

  50. Team, R. C (2013). R: a language and environment for statistical computing.

  51. Thomas, H., Thomas, H. M., & Ougham, H. (2000). Annuality, perenniality and cell death. Journal of Experimental Botany, 51(352), 1781–1788.

    CAS  Google Scholar 

  52. Thompson, P. L., & Gonzalez, A. (2017). Dispersal governs the reorganization of ecological networks under environmental change. Nature Ecology & Evolution, 1(6), 0162.

    Google Scholar 

  53. Trakhtenbrot, A., Nathan, R., Perry, G., & Richardson, D. M. (2005). The importance of long-distance dispersal in biodiversity conservation. Diversity and Distributions, 11(2), 173–181.

    Google Scholar 

  54. Vander Wall, S. B., Kuhn, K. M., & Beck, M. J. (2005). Seed removal, seed predation, and secondary dispersal. Ecology, 86(3), 801–806.

    Google Scholar 

  55. Westoby, M., French, K., Hughes, L., Rice, B., & Rodgerson, L. (1991). Why do more plant species use ants for dispersal on infertile compared with fertile soils? Australian Journal of Ecology, 16(4), 445–455.

    Google Scholar 

  56. Wiegand, T., Gunatilleke, S., & Gunatilleke, N. (2007). Species associations in a heterogeneous Sri Lankan dipterocarp forest. The American Naturalist, 170(4), E77–E95.

    Google Scholar 

Download references

Acknowledgments

The plant species data utilised in the study acquired from a national-level project on ‘Biodiversity characterisation at landscape level’ is thankfully acknowledged.

Funding

The financial assistance received by S. Mahanand from the University Grants Commision (UGC), Govt. of India in form of Research Fellowship is highly acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rajendra Mohan Panda.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Terrestrial and Ocean Dynamics: India Perspective

Electronic supplementary material

ESM 1

(DOCX 630 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Behera, M.D., Roy, P.S., Mahanand, S. et al. Angiospermic plant dispersal profile of India—a maiden analysis. Environ Monit Assess 191, 800 (2019). https://doi.org/10.1007/s10661-019-7703-x

Download citation

Keywords

  • Dispersal
  • Monochory
  • Plant longevity
  • Plant life form
  • Vegetation type