Skip to main content

Advertisement

Log in

Investigating the contribution of climate variables to estimates of net primary productivity in a tropical deciduous forest in India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Investigating the impact of climate variables on net primary productivity is crucial to evaluate the ecosystem health and the status of forest type response to climate change. The objective of this paper is (1) to estimate spatio-temporal patterns of net primary productivity (NPP) during 2001 to 2010 in a tropical deciduous forest based on the input variable dataset (i.e.meteorological and biophysical) derived from the remote sensing and other sources and (2) to investigate the effects of climate variables on NPP during 2001 to 2010. The study was carried out in Katerniaghat Wildlife Sanctuary that forms a part of a tropical forest and is situated in Uttar Pradesh, India, along the Indo-Nepal border. Mean annual NPP was observed to be highest during 2007 with a value of 878 g C m−2 year−1 and 781.25 g C m−2 year−1 for sal and teak respectively. A decline in mean NPP during 2002–2003, 2005 and 2008–2010 could be attributed to drought, increased temperature and vapour pressure deficit (VPD). The time lag correlation analysis revealed precipitation as the major variables affecting NPP, whereas combination of temperature and VPD showed dominant effect on NPP as revealed by generalized linear modelling. The carbon gain in NPP in sal forest was observed to be marginal higher than that of teak plantation throughout the study period. The decrease in NPP was observed during 2010, pertaining to increased VPD. Contribution of different climatic variables through some link process was revealed in statistical analysis and clearly indicated the co-dominance of all the variables in explaining NPP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-guidelines for computing crop water requirements-FAO irrigation and drainage paper 56. Fao, Rome, 300(9), D05109.

  • Behera, S. (2016). Biomass, net primary productivity and community analysis in an tropical deciduous forest. PhD thesis, IIT Kharagpur, India (unpublished).

  • Behera, S. K., Mishra, A. K., Sahu, N., Kumar, A., Singh, N., Kumar, A., Bajpai, O., Chaudhary, L. B., Khare, P. B., & Tuli, R. (2012). The study of microclimate in response to different plant community association in tropical moist deciduous forest from northern India. Biodiversity and Conservation, 21(5), 1159–1176.

    Google Scholar 

  • Bobée, C., Ottlé, C., Maignan, F., De Noblet-Ducoudré, N., Maugis, P., Lézine, A. M., & Ndiaye, M. (2012). Analysis of vegetation seasonality in Sahelian environments using MODIS LAI, in association with land cover and rainfall. Journal of Arid Environments, 84, 38–50.

    Google Scholar 

  • Bora, M. E. H. A., & Joshi, N. A. M. I. T. A. (2014). A study on variation in biochemical aspects of different tree species with tolerance and performance index. The Bioscan, 9(1), 59–63.

    Google Scholar 

  • Cao, M., Prince, S. D., Small, J., & Goetz, S. J. (2004). Remotely sensed interannual variations and trends in terrestrial net primary productivity 1981–2000. Ecosystems, 7(3), 233–242.

    Google Scholar 

  • Chang, C. T., Wang, H. C., & Huang, C. Y. (2013). Impacts of vegetation onset time on the net primary productivity in a mountainous island in Pacific Asia. Environmental Research Letters, 8(4), 045030.

    Google Scholar 

  • Chauhan, D. S., Dhanai, C. S., Singh, B., Chauhan, S., Todaria, N. P., & Khalid, M. A. (2008). Regeneration and tree diversity in natural and planted forests in a terrain - Bhabhar forest in Katarniaghat Wildlife Sanctuary, India. Tropical Ecology, 49(1), 53–67.

    Google Scholar 

  • Chitale, V. S., & Behera, M. D. (2012). Can the distribution of sal (Shorea robusta Gaertn. f.) shift in the northeastern direction in India due to changing climate?. Current Science, 1126-1135.

  • Chitale, V. S., Tripathi, P., Behera, M. D., Behera, S. K., & Tuli, R. (2012). On the relationships among diversity, productivity and climate from an Indian tropical ecosystem: a preliminary investigation. Biodiversity and Conservation, 21(5), 1177–1197.

    Google Scholar 

  • Condit, R., Hubbell, S. P., & Foster, R. B. (1996). Assessing the response of plant functional types to climatic change in tropical forests. Journal of Vegetation Science, 7(3), 405–416.

    Google Scholar 

  • Crabtree, R., Potter, C., Mullen, R., Sheldon, J., Huang, S., Harmsen, J., Rodman, A., & Jean, C. (2009). A modeling and spatio-temporal analysis framework for monitoring environmental change using NPP as an ecosystem indicator. Remote Sensing of Environment, 113(7), 1486–1496.

    Google Scholar 

  • Cramer, W., Bondeau, A., Woodward, F. I., Prentice, I. C., Betts, R. A., Brovkin, V., Cox, P. M., Fisher, V., Foley, J. A., Friend, A. D., & Kucharik, C. (2001). Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biology, 7(4), 357–373.

    Google Scholar 

  • Cunningham, S., & Read, J. (2002). Comparison of temperate and tropical rainforest tree species: photosynthetic responses to growth temperature. Oecologia, 133(2), 112–119.

    CAS  Google Scholar 

  • Díaz, S., & Cabido, M. (1997). Plant functional types and ecosystem function in relation to global change. Journal of Vegetation Science, 8(4), 463–474.

    Google Scholar 

  • Dobson, A. J. (2001). An introduction to generalized linear models. CRC press.

  • Eamus, D., Boulain, N., Cleverly, J., & Breshears, D. D. (2013). Global change-type drought-induced tree mortality: vapor pressure deficit is more important than temperature per se in causing decline in tree health. Ecology and Evolution, 3(8), 2711–2729.

    Google Scholar 

  • Field, C. B., Behrenfeld, M. J., Randerson, J. T., & Falkowski, P. (1998). Primary production of the biosphere: integrating terrestrial and oceanic components. Science, 281(5374), 237–240.

    CAS  Google Scholar 

  • Field, C. B., Randerson, J. T., & Malmström, C. M. (1995). Global net primary production: combining ecology and remote sensing. Remote Sensing of Environment, 51(1), 74–88.

    Google Scholar 

  • Francis, P. A., & Gadgil, S. (2010). Towards understanding the unusual Indian monsoon in 2009. Journal of Earth System Science, 119(4), 397–415.

    Google Scholar 

  • Gautam, M. K., Tripathi, A. K., & Manhas, R. K. (2011). Assessment of critical loads in tropical sal (Shorea robusta Gaertn. f.) forests of Doon Valley Himalayas, India. Water, Air, & Soil Pollution, 218(1–4), 235–264.

    CAS  Google Scholar 

  • Girardin, C. A. J., Malhi, Y., Aragao, L. E. O. C., Mamani, M., Huaraca Huasco, W., Durand, L., Feeley, K. J., Rapp, J., Silva-Espejo, J. E., Silman, M., Salinas, N., & Whittaker, R. J. (2010). Net primary productivity allocation and cycling of carbon along a tropical forest elevational transect in the Peruvian Andes. Global Change Biology, 16(12), 3176–3192.

    Google Scholar 

  • Gliniars, R., Becker, G. S., Braun, D., & Dalitz, H. (2013). Monthly stem increment in relation to climatic variables during 7 years in an East African rainforest. Trees, 27(4), 1129–1138.

    Google Scholar 

  • Gunderson, C. A., O’HARA, K. H., Campion, C. M., Walker, A. V., & Edwards, N. T. (2010). Thermal plasticity of photosynthesis: the role of acclimation in forest responses to a warming climate. Global Change Biology, 16(8), 2272–2286.

    Google Scholar 

  • Jha, K. K. (2003). Temporal pattern of dry matter and nutrient dynamics in young teak plantations. In XII world forestry congress (pp. 0029-1).

  • Jha, M. N., & Pande, P. (1980). Loss of soil moisture as affected by decomposing leaf litter of different forest species. Indian Forester, 106(5), 352–356.

    Google Scholar 

  • Johnsingh, A. J. T., Ramesh, K., Qureshi, Q., David, A., Goyal, S. P., Rawat, G. S., ... & Prasad, S. (2004). Conservation status of tiger and associated species in the Terai Arc Landscape, India (pp. viii+−110). Dehradun: Wildlife Institute of India.

  • Kale, M. P., & Roy, P. S. (2012). Net primary productivity estimation and its relationship with tree diversity for tropical dry deciduous forests of central India. Biodiversity and conservation, 21(5), 1199–1214.

    Google Scholar 

  • Kindermann, J., Würth, G., Kohlmaier, G. H., & Badeck, F. W. (1996). Interannual variation of carbon exchange fluxes in terrestrial ecosystems. Global Biogeochemical Cycles, 10(4), 737–755.

    CAS  Google Scholar 

  • Krishnamurti, T. N., Thomas, A., Simon, A., & Kumar, V. (2010). Desert air incursions, an overlooked aspect, for the dry spells of the Indian summer monsoon. Journal of the Atmospheric Sciences, 67(10), 3423–3441.

    Google Scholar 

  • Kumar, K. N., Rajeevan, M., Pai, D. S., Srivastava, A. K., & Preethi, B. (2013). On the observed variability of monsoon droughts over India. Weather and Climate Extremes, 1, 42–50.

    Google Scholar 

  • Landsberg, J. J. (1986). Physiological ecology of forest production (pp. 165–178). London: Academic Press.

    Google Scholar 

  • Li, F., Zhao, W., & Liu, H. (2013). The response of aboveground net primary productivity of desert vegetation to rainfall pulse in the temperate desert region of northwest China. PLoS One, 8(9), e73003.

    CAS  Google Scholar 

  • Liang, N., & Maruyama, K. (1995). Interactive effects of CO2 enrichment and drought stress on gas exchange and water-use efficiency in Alnus firma. Environmental and Experimental Botany, 35(3), 353–361.

    Google Scholar 

  • Liu, Y., Yu, S., Xie, Z. P., & Staehelin, C. (2012). Analysis of a negative plant–soil feedback in a subtropical monsoon forest. Journal of Ecology, 100(4), 1019–1028.

    Google Scholar 

  • Lloyd, J., & Farquhar, G. D. (2008). Effects of rising temperatures and [CO2] on the physiology of tropical forest trees. Philosophical Transactions of the Royal Society, B: Biological Sciences, 363(1498), 1811–1817.

    CAS  Google Scholar 

  • Loescher, H. W., Oberbauer, S. F., Gholz, H. L., & Clark, D. B. (2003). Environmental controls on net ecosystem-level carbon exchange and productivity in a Central American tropical wet forest. Global Change Biology, 9(3), 396–412.

    Google Scholar 

  • Malhi, Y., Aragao, L. E. O., Metcalfe, D. B., Paiva, R., Quesada, C. A., Almeida, S., et al. (2009). Comprehensive assessment of carbon productivity, allocation and storage in three Amazonian forests. Global Change Biology, 15(5), 1255–1274.

    Google Scholar 

  • Monteith, J. L. (1972). Solar radiation and productivity in tropical ecosystems. Journal of Applied Ecology, 9(3), 747–766.

    Google Scholar 

  • Nayak, R. K., Patel, N. R., & Dadhwal, V. K. (2013). Inter-annual variability and climate control of terrestrial net primary productivity over India. International Journal of Climatology, 33(1), 132–142.

    Google Scholar 

  • Nemani, R. R., Keeling, C. D., Hashimoto, H., Jolly, W. M., Piper, S. C., Tucker, C. J., Myneni, R. B., & Running, S. W. (2003). Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300(5625), 1560–1563.

    CAS  Google Scholar 

  • Nogués-Bravo, D. (2009). Comparing regression methods to predict species richness patterns. Web Ecology, 9(1), 58–67.

    Google Scholar 

  • Pai, D. S., Sridhar, L., Guhathakurta, P., & Hatwar, H. R. (2011). District-wide drought climatology of the southwest monsoon season over India based on standardized precipitation index (SPI). Natural Hazards, 59(3), 1797–1813.

    Google Scholar 

  • Pande, P. K. (2005). Biomass and productivity in some disturbed tropical dry deciduous teak forests of Satpura plateau, Madhya Pradesh. Tropical Ecology, 46(2), 229–240.

    Google Scholar 

  • Pande, P. K., & Patra, A. K. (2010). Biomass and productivity in sal and miscellaneous forests of Satpura plateau (Madhya Pradesh) India. Advances in Bioscience and Biotechnology, 1(01), 30–38.

    Google Scholar 

  • Peng, D. L., Huang, J. F., Cai, C. X., Deng, R., & Xu, J. F. (2008). Assessing the response of seasonal variation of net primary productivity to climate using remote sensing data and geographic information system techniques in Xinjiang. Journal of Integrative Plant Biology, 50(12), 1580–1588.

    Google Scholar 

  • Potter, C. S., Randerson, J. T., Field, C. B., Matson, P. A., Vitousek, P. M., Mooney, H. A., & Klooster, S. A. (1993). Terrestrial ecosystem production: a process model based on global satellite and surface data. Global Biogeochemical Cycles, 7(4), 811–841.

    Google Scholar 

  • Raich, J. W., Russell, A. E., Kitayama, K., Parton, W. J., & Vitousek, P. M. (2006). Temperature influences carbon accumulation in moist tropical forests. Ecology, 87(1), 76–87.

    Google Scholar 

  • Rajeevan, M., & Sridhar, L. (2008). Inter-annual relationship between Atlantic Sea surface temperature anomalies and Indian summer monsoon. Geophysical Research Letters, 35(21).

  • Ram, S., Borgaonkar, H. P., & Sikder, A. B. (2008). Tree-ring analysis of teak (Tectona grandis LF) in central India and its relationship with rainfall and moisture index. Journal of Earth System Science, 117(5), 637–645.

    Google Scholar 

  • Rao, P. B., Kaur, A., & Tewari, A. (2008). Drought resistance in seedlings of five important tree species in Tarai region of Uttarakhand. Tropical Ecology, 49(1), 43.

    Google Scholar 

  • R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available online at https://www.R-project.org/.

  • Shadangi, D. K., & Nath, V. (2008). Ecotone and climate change. Journal of Tropical Forestry, 24, 111.

    Google Scholar 

  • Spitters, C. J. T., Toussaint, H. A. J. M., & Goudriaan, J. (1986). Separating the diffuse and direct component of global radiation and its implications for modeling canopy photosynthesis. Part I. Components of incoming radiation. Agricultural and Forest Meteorology, 38(1–3), 217–229.

    Google Scholar 

  • Steele, B. M., Reddy, S. K., & Nemani, R. R. (2005). A regression strategy for analyzing environmental data generated by spatio-temporal processes. Ecological Modelling, 181(2–3), 93–108.

    Google Scholar 

  • Suoheimo, J. (1999). Natural regeneration of Sal (Shorea robusta) in the Terai region, Nepal. University of Helsinki, Department of Forest Ecology, Tropical Silviculture Unit, pp.134.

  • Tian, H., Melillo, J. M., Kicklighter, D. W., McGuire, A. D., Helfrich, J. V., III, Moore, B., III, & VoÈroÈsmarty, C. J. (1998). Effect of interannual climate variability on carbon storage in Amazonian ecosystems. Nature, 396(6712), 664–667.

    CAS  Google Scholar 

  • Todorovski, L., Džeroski, S., Langley, P., & Potter, C. (2003). Using equation discovery to revise an Earth ecosystem model of the carbon net production. Ecological Modelling, 170(2–3), 141–154.

    CAS  Google Scholar 

  • Tripathi, K. P., & Singh, B. (2009). Species diversity and vegetation structure across various strata in natural and plantation forests in Katerniaghat Wildlife Sanctuary, North India. Tropical Ecology, 50(1), 191.

    Google Scholar 

  • Tripathi, P., Patel, N. R., & Kushwaha, S. P. S. (2018). Estimating net primary productivity in tropical forest plantations in India using satellite-driven ecosystem model. Geocarto International, 33(9), 988–999.

    Google Scholar 

  • Tyagi, J. V., Kumar, R., Srivastava, S. L., & Singh, R. D. (2011). Effect of micro-environmental factors on natural regeneration of Sal (Shorea robusta). Journal of Forestry Research, 22(4), 543–550.

    Google Scholar 

  • Wagner, F., Rossi, V., Aubry-Kientz, M., Bonal, D., Dalitz, H., Gliniars, R., Stahl, C., Trabucco, A., & Herault, B. (2014). Pan-tropical analysis of climate effects on seasonal tree growth. PLoS One, 9(3), e92337.

    Google Scholar 

  • Wang, L., Gong, W., Ma, Y., & Zhang, M. (2013). Modeling regional vegetation NPP variations and their relationships with climatic parameters in Wuhan, China. Earth Interactions, 17(4), 1–20.

    Google Scholar 

  • World Meteorological Association (WMO). (2013). The global climate 2001–2010: A decade of climate extremes, summary report. Geneva, Switzerland: WMO 16p.

    Google Scholar 

  • Xiao, X., Zhang, Q., Hollinger, D., Aber, J., & Moore, B. (2005). Modeling gross primary production of an evergreen needleleaf forest using MODIS and climate data. Ecological Applications, 15(3), 954–969.

    Google Scholar 

  • Zhang, X., Friedl, M. A., Schaaf, C. B., & Strahler, A. H. (2004). Climate controls on vegetation phenological patterns in northern mid‐and high latitudes inferred from MODIS data. Global change biology, 10(7), 1133–1145.

    Google Scholar 

  • Zhang, L., Xiao, J., Li, J., Wang, K., Lei, L., & Guo, H. (2012). The 2010 spring drought reduced primary productivity in southwestern China. Environmental Research Letters, 7(4), 045706.

    Google Scholar 

  • Zhao, M., & Running, S. W. (2010). Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. science, 329(5994), 940–943.

    CAS  Google Scholar 

  • Zhao, J., Yan, X., Guo, J., & Jia, G. (2012). Evaluating spatial-temporal dynamics of net primary productivity of different forest types in northeastern China based on improved FORCCHN. PLoS One, 7(11), e48131.

    CAS  Google Scholar 

  • Zhao, M., Heinsch, F. A., Nemani, R. R., & Running, S. W. (2005). Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sensing of Environment, 95(2), 164–176.

    Google Scholar 

  • Zomer, R. J., Trabucco, A., Bossio, D. A., & Verchot, L. V. (2008). Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agriculture, Ecosystems & Environment, 126(1–2), 67–80.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poonam Tripathi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Terrestrial and Ocean Dynamics: India Perspective

Electronic supplementary material

ESM 1

(DOCX 281 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, P., Behera, M.D., Behera, S.K. et al. Investigating the contribution of climate variables to estimates of net primary productivity in a tropical deciduous forest in India. Environ Monit Assess 191 (Suppl 3), 798 (2019). https://doi.org/10.1007/s10661-019-7684-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7684-9

Keywords

Navigation