Skip to main content

Advertisement

Log in

Does spatial heterogeneity of landscape explain the process of plant invasion? A case study of Hyptis suaveolens from Indian Western Himalaya

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Biological invasion is probably one of the most serious threats to biodiversity after climate change. Landscape distinguished by the heterogeneity of structure, forms, human interferences, and environmental settings plays an important role in the establishment and spread of invasive species. We investigated the effect of the spatial heterogeneity for a selected landscape upon the invasion process through a case study of Hyptis (Hyptis suaveolens) in the Indian Western Himalayan region. The selected study site constitutes a heterogeneous landscape of 32,300 ha in the state of Uttarakhand, placed at the lower elevation of the Indian Himalaya. The landscape has varying levels and patterns of Hyptis invasion. We quantified the spatial heterogeneity in terms of elevation; distance from the canal, river, road, and settlement; and 18 landscape metrics (at the patch and land use class level) to investigate their influence on the invasion; for this purpose, a logistic regression model was developed. The invasion of Hyptis was found to be governed by spatial heterogeneity. The highest probability of invasion was found in the areas adjacent to rivers and roads. The analysis at patch level revealed that the invasion is largely governed by the perimeter-area ratio of patches and is positively correlated. This suggests for greater invasion chances in smaller patches as compared with larger ones. The analysis for the land use class metrics indicated a higher influence of edge density expressed as total edge length of patches per unit area, followed by patch density expresses as a total number of patches per unit area. Hence, the landscapes with larger edges and more number of patches are supposed to be more prone to invasion risks. The results of the study can be used by forest managers in designing a landscape-level system to control invasion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adhikari, D., Tiwary, R., & Barik, S. K. (2015). Modelling hotspots for invasive alien plants in India. PloS one, 10(7), e0134665.

    Article  Google Scholar 

  • Alpert, P., Bone, E., & Holzapfel, C. (2000). Invasiveness, invasibility and the role of environmental stress in the spread of non-native plants. Perspectives in plant ecology, evolution and systematics, 3(1), 52–66.

    Article  Google Scholar 

  • Champion, H. G., & Seth, S. K. (1968). A Revised Survey of the Forest Types of India. New Delhi: Government of India Publication.

    Google Scholar 

  • Clark, W. A. V., & Hosking, P. L. (1986). Statistical methods for geographers. New York: Wiley.

    Google Scholar 

  • Deacon, A. E., Ramnarine, I. W., & Magurran, A. E. (2011). How reproductive ecology contributes to the spread of a globally invasive fish. PLoS One, 6(9), e24416.

    Article  CAS  Google Scholar 

  • Decocq, G. (2010). Invisibility promotes invasibility. Frontiers in Ecology and the Environment, 8(7), 346–347.

    Article  Google Scholar 

  • Driscoll, D. A., Banks, S. C., Barton, P. S., Lindenmayer, D. B., & Smith, A. L. (2013). Conceptual domain of the matrix in fragmented landscapes. Trends in ecology & evolution, 28(10), 605–613.

    Article  Google Scholar 

  • Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and distributions, 17(1), 43–57.

    Article  Google Scholar 

  • Forman, R. T. T., & Godron, M. (1986). Landscape ecology John Wiley & Sons. New York, 4, 22–28.

    Google Scholar 

  • Hansen, M. J., & Clevenger, A. P. (2005). The influence of disturbance and habitat on the presence of non-native plant species along transport corridors. Biological conservation, 125(2), 249–259.

    Article  Google Scholar 

  • Hellmann, J. J., Byers, J. E., Bierwagen, B. G., & Dukes, J. S. (2008). Five potential consequences of climate change for invasive species. Conservation biology, 22(3), 534–543.

    Article  Google Scholar 

  • Heshner, D., & Johnson, L. W. (1981). Applied discrete choice modeling. London: Croom Helm.

    Google Scholar 

  • Jesus, N. Z. T., Falcão, H. S., Lima, G. R. M., Caldas Filho, M. R. D., Sales, I. R. P., Gomes, I. F., Santos, S. G., Tavares, J. F., Barbosa-Filho, J. M., & Batista, L. M. (2013). Hyptis suaveolens (L.) Poit (Lamiaceae), a medicinal plant protects the stomach against several gastric ulcer models. Journal of ethnopharmacology, 150(3), 982–988.

    Article  CAS  Google Scholar 

  • Khaiter, P. A., & Erechtchoukova, M. G. (2017). Conceptual design of a software tool for management of biological invasion. In Environmental Software Systems. Computer Science for Environmental Protection: 12th IFIP WG 5.11 International Symposium, ISESS 2017, Zadar, Croatia, May 10-12, 2017, Proceedings 12 (pp. 209–220). Springer.

  • Khuroo, A. A., Reshi, Z. A., Malik, A. H., Weber, E., Rashid, I., & Dar, G. H. (2012). Alien flora of India: taxonomic composition, invasion status and biogeographic affiliations. Biological Invasions, 14(1), 99–113.

    Article  Google Scholar 

  • Khuroo, A. A., Reshi, Z., Rashid, I., Dar, G. H., & Malik, A. H. (2009). Plant invasions in montane ecosystems. Frontiers in Ecology and the Environment, 7(8), 408.

    Article  Google Scholar 

  • Kie, J. G., Bowyer, R. T., Nicholson, M. C., Boroski, B. B., & Loft, E. R. (2002). Landscape heterogeneity at differing scales: effects on spatial distribution of mule deer. Ecology, 83(2), 530–544.

    Article  Google Scholar 

  • Kumar, S., Simonson, S. E., & Stohlgren, T. J. (2009). Effects of spatial heterogeneity on butterfly species richness in Rocky Mountain National Park, CO, USA. Biodiversity and Conservation, 18(3), 739–763.

    Article  Google Scholar 

  • Kumar, S., & Stohlgren, T. J. (2009). Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. Journal of Ecology and the Natural Environment, 1(4), 94–98.

    Google Scholar 

  • Kumar, S., Stohlgren, T. J., & Chong, G. W. (2006). Spatial heterogeneity influences native and nonnative plant species richness. Ecology, 87(12), 3186–3199.

    Article  Google Scholar 

  • Levins, R. (1968). Evolution in changing environments: some theoretical explorations. Princeton University Press.

  • Li, H., & Reynolds, J. F. (1994). A simulation experiment to quantify spatial heterogeneity in categorical maps. Ecology, 75(8), 2446–2455.

    Article  Google Scholar 

  • Lustig, A., Stouffer, D. B., Doscher, C., & Worner, S. P. (2017). Landscape metrics as a framework to measure the effect of landscape structure on the spread of invasive insect species. Landscape Ecology, 32(12), 2311–2325. https://doi.org/10.1007/s10980-017-0570-3.

    Article  Google Scholar 

  • Mazza, G., Tricarico, E., Genovesi, P., & Gherardi, F. (2014). Biological invaders are threats to human health: an overview. Ethology Ecology & Evolution, 26(2–3), 112–129.

    Article  Google Scholar 

  • McGarigal, K., Cushman, S. A., & Ene, E. (2012). FRAGSTATS v4: spatial pattern analysis program for categorical and continuous maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. http://www. umass. edu/landeco/research/fragstats/fragstats. html.

  • Meyer, J. S., Irwin, L. L., & Boyce, M. S. (1998). Influence of habitat abundance and fragmentation on northern spotted owls in western Oregon. Wildlife Monographs, 3–51.

  • Minor, E. S., Tessel, S. M., Engelhardt, K. A. M., & Lookingbill, T. R. (2009). The role of landscape connectivity in assembling exotic plant communities: a network analysis. Ecology, 90(7), 1802–1809.

    Article  Google Scholar 

  • Mondal, K. C., Dey, S., & Pati, B. R. (2007). Antimicrobial activity of the leaf extracts of Hyptis suaveolens (L.) poit. Indian Journal of Pharmaceutical Sciences, 69(4), 568.

    Article  Google Scholar 

  • Nunn, A. D., Bolland, J. D., Harvey, J. P., & Cowx, I. G. (2007). Establishment of self-sustaining populations of non-native fish species in the River Trent and Warwickshire Avon, UK, indicated by the presence of 0+ fish. Aquatic Invasions, 2, 190–196. https://doi.org/10.3391/ai.2007.2.3.6.

    Article  Google Scholar 

  • Padalia, H., Kudrat, M., & Sharma, K. P. (2013). Mapping sub-pixel occurrence of an alien invasive Hyptis suaveolens (L.) Poit. using spectral unmixing technique. International journal of remote sensing, 34(1), 325–340.

    Article  Google Scholar 

  • Padalia, H., Srivastava, V., & Kushwaha, S. P. S. (2014). Modeling potential invasion range of alien invasive species, Hyptis suaveolens (L.) Poit. in India: Comparison of MaxEnt and GARP. Ecological informatics, 22, 36–43.

    Article  Google Scholar 

  • Pearson, R. G. (2007). Species’ distribution modeling for conservation educators and practitioners. Synthesis. American Museum of Natural History, 50.

  • Phillips, S. J., Dudík, M., & Schapire, R. E. (2004). A maximum entropy approach to species distribution modeling. Proceedings of the Twenty-first international conference on Machine learning - ICML ’04, 655–662.

  • Raizada, P. (2006). Ecological and vegetative characteristics of a potent invader, Hyptis suaveolens Poit. from India. Lyonia, 11(2), 115–120.

    Google Scholar 

  • Rangel, T. F., Diniz-Filho, J. A. F., & Bini, L. M. (2010). SAM: a comprehensive application for spatial analysis in macroecology. Ecography, 33(1), 46–50.

    Article  Google Scholar 

  • Razanajatovo, M., Maurel, N., Dawson, W., Essl, F., Kreft, H., Pergl, J., Pyšek, P., Weigelt, P., Winter, M., & van Kleunen, M. (2016). ARTICLE Plants capable of selfing are more likely to become naturalized. Nature Communications, 7. https://doi.org/10.1038/ncomms13313.

  • Rejmánek, M., & Richardson, D. M. (1996). What attributes make some plant species more invasive? Ecology, 77(6), 1655–1661.

    Article  Google Scholar 

  • Richardson, D. M., Pyšek, P., Rejmánek, M., Barbour, M. G., Panetta, F. D., & West, C. J. (2000). Naturalization and invasion of alien plants: concepts and definitions. Diversity and distributions, 6(2), 93–107.

    Article  Google Scholar 

  • Smith, P. A. (1994). Autocorrelation in logistic regression modelling of species’ distributions. Global ecology and biogeography letters, 4, 47–61.

    Article  Google Scholar 

  • Stockwell, D. (1999). The GARP modelling system: problems and solutions to automated spatial prediction. International journal of geographical information science, 13(2), 143–158.

    Article  Google Scholar 

  • Stohlgren, T. J., Bull, K. A., Otsuki, Y., Villa, C. A., & Lee, M. (1998). Riparian zones as havens for exotic plant species in the central grasslands. Plant Ecology, 138(1), 113–125.

    Article  Google Scholar 

  • Szymura, M., Szymura, T. H., & Świerszcz, S. (2016). Do Landscape Structure and Socio-Economic Variables Explain the Solidago Invasion? Folia Geobotanica, 51(1), 13–25. https://doi.org/10.1007/s12224-016-9241-4.

    Article  Google Scholar 

  • Turner, M. G. (2005). Landscape ecology: what is the state of the science? Annual Review of Ecology, Evolution, and Systematics, 36, 319–344.

    Article  Google Scholar 

  • Venkateshappa, S. M., & Sreenath, K. P. (2013). Potential medicinal plants of Lamiaceae. American International Journal of Research in Formal, Applied and Natural Sciences, 1(3), 82–87.

    Google Scholar 

  • Vilà, M., Espinar, J. L., Hejda, M., Hulme, P. E., Jarošík, V., Maron, J. L., Pergl, J., Schaffner, U., Sun, Y., & Pyšek, P. (2011). Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecology letters, 14(7), 702–708.

    Article  Google Scholar 

  • Willis, J. C. (1973). A dictionary of the flowering plants and ferns. CUP Archive.

  • Wilson, E. O., & MacArthur, R. H. (1967). The theory of island biogeography. Princeton, NJ.

  • Yang, X.-Q., Kushwaha, S. P. S., Saran, S., Xu, J., & Roy, P. S. (2013). Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecological engineering, 51, 83–87.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Indian Institute of Remote Sensing (IIRS), Dehradun, for providing computational and logistic support during the field survey. The study was also supported by the Indian Council of Forestry Research and Education (ICFRE), Dehradun which is gratefully acknowledged. Anonymous reviewers are acknowledged for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Kumar.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Terrestrial and Ocean Dynamics: India Perspective

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M., Padalia, H., Nandy, S. et al. Does spatial heterogeneity of landscape explain the process of plant invasion? A case study of Hyptis suaveolens from Indian Western Himalaya. Environ Monit Assess 191 (Suppl 3), 794 (2019). https://doi.org/10.1007/s10661-019-7682-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7682-y

Keywords

Navigation