Skip to main content

Advertisement

Log in

Dynamics of atmospheric carbon dioxide over different land cover types in India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study presents an analysis of high-resolution space borne retrievals of the column-averaged dry-air mole fraction of carbon dioxide \( \left({X}_{CO_2}\right) \) and the role of vegetation in controlling atmospheric CO2 dynamics over the Indian region. Nadir and glint mode \( {X}_{CO_2} \) retrievals from the Orbiting Carbon Observatory-2 (OCO-2) spectrometer for the period September 2014–July 2017 are studied with satellite-derived normalized difference vegetation index (NDVI) and rainfall over different land cover types. The atmospheric \( {X}_{CO_2} \) variability shows a strong negative correlation with satellite-derived NDVI. Higher rainfall favours the vegetative growth and photosynthetic activity, thus lowers atmospheric \( {X}_{CO_2} \) concentration. The mean monthly \( {X}_{CO_2} \) over terrestrial region of India is observed as 400.18 ± 3.85 ppm with seasonal variations over different land cover types. The correlation of \( {X}_{CO_2} \) with NDVI over mixed forest and deciduous broadleaf forest types was estimated as − 0.86, − 0.76 (p < 0.01), respectively. The study could also highlight strong seasonal \( {X}_{CO_2} \) variability at higher latitudinal zones of India. It is significant to note that space-based observations indicate that atmospheric carbon dioxide levels have surpassed a significant milestone of 400 ppm in recent times. The study provides significant inputs towards improving our understanding of terrestrial biogeochemical carbon cycle over India.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Attri, S. D., & Tyagi, A. (2010). Climate profile of India. Environmental Meteorology, 1, 1–122.

    Google Scholar 

  • Boesch, H., Baker, D., Connor, B., Crisp, D., & Miller, C. (2011). Global characterization of CO2 column retrievals from shortwave-infrared satellite observations of the Orbiting Carbon Observatory-2 mission. Remote Sensing, 3, 270–304.

    Article  Google Scholar 

  • Broxton, P., Zeng, X., Sulla-Menashe, D., & Troch, P. (2014). A global land cover climatology using MODIS data. Journal of Applied Meteorology and Climatology, 53, 1593–1605.

    Article  Google Scholar 

  • Byrne, B., Jones, D. B. A., Strong, K., Zeng, Z.-C., Deng, F., & Liu, J. (2017). Sensitivity of CO2 surface flux constraints to observational coverage. Journal of Geophysical Research-Atmospheres, 122, 6672–6694.

    Article  CAS  Google Scholar 

  • Chatterjee, A., Gierach, M.M., Sutton, A.J., Feely, R.A., Crisp, D., Eldering, A., Gunson, M.R., O’Dell, C.W., Stephens, B.B., Schimel, D.S. (2017). Influence of El Niño on atmospheric CO2 over the tropical Pacific Ocean: findings from NASA’s OCO-2 mission. Science, 358, eaam5776, 13 October, 2017.

  • Chhabra, A., & Dadhwal, V. K. (2004). Estimating terrestrial net primary productivity of India using satellite data. Current Science, 86(2), 269–271.

    Google Scholar 

  • Chhabra, A., Dadhwal, V.K. (2005). Estimating spatial, seasonal and temporal variability in terrestrial net primary productivity over India using SPOT/VEGETATION data. Proceedings of the “2nd SPOT VEGETATION international users conference” (eds. Veroustrate F, Bartholome E, and Verstraeten WW), published by official publication of the European Community, ISBN 92-894-9004-7, pp. 179-186.

  • Chhabra, A., & Gohel, A. (2017). Recent observations of atmospheric carbon dioxide over India. Current Science, 112(12), 2364–2366.

    CAS  Google Scholar 

  • Ci, L. J., & Yang, X. H. (Eds.). (2010). Desertification and its control in China (pp. 10–19). Beijing: Higher Education Press.

    Google Scholar 

  • Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., et al. (2013). Carbon and other biogeochemical cycles. In: Climate change 2013: the physical science basis. Contribution of Working Group- I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, USA, 465–570,

  • Connor, B., Bӧsch, H., McDuffie, J., Taylor, T., Fu, D., Frankenberg, C., O’Dell, C., et al. (2016). Quantification of uncertainties in OCO-2 measurements of \( {X}_{CO_2} \): simulations and linear error analysis. Atmospheric measurement technique discussions.

  • Crisp, D., Pollock, H. R., Rosenberg, R., Chapsky, L., Lee, R. A. M., Oyafuso, F. A., Frankenberg, C., et al. (2016). The on-orbit performance of the Orbiting Carbon Observatory-2 (OCO-2) Instrument and its radiometrically calibrated products. Atmospheric Measurement Techniques, 10, 59–81.

    Article  Google Scholar 

  • Dlugokencky, E., Tans, P. (2015). Trends in atmospheric carbon dioxide, http: //www.esrl.noaa.gov/gmd/ccgg/trends.

  • Duan, Z. H., Xiao, H. L., Dong, Z. B., He, X. D., & Wang, G. (2001). Estimate of total CO2 output from desertified sandy land in China. Atmospheric Environment, 35, 5915–5921.

    Article  CAS  Google Scholar 

  • Eldering, A., O’Dell, C. W., Wennberg, P. O., Crisp, D., Gunson, M. R., Viatte, C., Avis, C., et al. (2017). The Orbiting Caron Observatory-2: first 18 months of science data products. Atmospheric Measurement Techniques, 10, 549–563.

    Article  Google Scholar 

  • Frankenberg, C., Pollock, R., Lee, R. A. M., Rosenberg, R., Blavier, J.–. F., Crisp, D., O’Dell, C. W., et al. (2015). The Orbiting Carbon Observatory (OCO-2): spectrometer performance evaluation using pre-launch direct sun measurements. Atmospheric Measurement Techniques, 8, 301–313.

    Article  CAS  Google Scholar 

  • Giltrap, D. L., Li, C., & Sagar, S. (2010). DNDC: A process-based model of greenhouse gas fluxes from agricultural soils. Agriculture, Ecosystems and Environment, 136, 292–300.

    Article  CAS  Google Scholar 

  • Guo, M., Wang, X., Li, J., Wang, H., & Tani, H. (2013). Examining the relationships between land cover and greenhouse gas concentrations using remote-sensing data in East Asia. International Journal of Remote Sensing, 34(12), 4281–4303.

    Article  Google Scholar 

  • Houghton, R. A., House, J. I., Pongratz, J., van der Werf, Defries, G. R., Hansen, R. S., Le Quere, M. C., & Ramankutty, N. (2012). Carbon emissions from land use and land cover change. Biogeosciences, 9, 5125–5142. https://doi.org/10.5194/bg-9-5125-2012.

    Article  CAS  Google Scholar 

  • Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83, 195–213.

    Article  Google Scholar 

  • Hungershoefer, K., Breon, F. M., Peylin, P., Chevallier, F., Rayner, P., Klonecki, A., et al. (2010). Evaluation of various observing systems for the global monitoring of CO2 surface fluxes. Atmospheric Chemistry and Physics, 10, 10503–10520.

    Article  CAS  Google Scholar 

  • IGBP, 1990, The International Geosphere–Biosphere Programme: a study of global change— the initial core project. IGBP Global Change Report no. 12, International Geosphere–Biosphere Programme, Stockholm, Sweden.

  • IGBP, 1992, Improved Global Data for Land Applications, edited by J. R. G. Townshend. IGBP Global Change Report no. 20, International Geosphere–Biosphere Programme, Stockholm, Sweden.

  • Kumar, K. R., Revadekar, J. V., & Tiwari, Y. K. (2014). AIRS retrieved CO2 and its association with climatic parameters over India during 2004–2011. The Science of the Total Environment, 476-477, 79–89.

    Article  CAS  Google Scholar 

  • Le Quere, C., Raupach, M. R., Canadell, J. G., Marland, G., Bopp, L., Ciais, P., Conway, T. J., et al. (2009). Trends in the sources and sinks of carbon dioxide. Nature Geoscience, 2(12), 831–836.

    Article  Google Scholar 

  • Liang, A., Gong, W., Han, G., & Xiang, C. (2017). Comparison of satellite-observed XCO2 from GOSAT, OCO-2 and ground-based TCCON. Remote Sensing, 9, 1033. https://doi.org/10.3390/rs9101033.

    Article  Google Scholar 

  • Lin, X., Indira, N. K., Ramonet, M., Delmotte, M., Ciais, P., Bhatt, B. C., Reddy, M. V., Angchuk, D., Balakrishnan, S., Jorphail, S., Dorjai, T., Mahey, T. T., Patnaik, S., Begum, M., Brenninkmeijer, C., Durairaj, S., Kirubagaran, R., Schmidt, M., Swathi, P. S., Vinithkumar, N. V., Yver Kwok, C., & Gaur, V. K. (2015). Long lived atmospheric trace gases measurements in flask samples from three stations in India. Atmospheric Chemistry and Physics, 15, 9819–9849.

    Article  CAS  Google Scholar 

  • Liu, Y., Li, Y., Li, S., & Motesharrei, S. (2015). Spatial and temporal patterns of global NDVI trends: Correlation with climate and human factors. Remote Sensing, 7, 13233–13250.

    Article  Google Scholar 

  • Massie, S. T., Schmidt, K. S., Eldering, A., & Crisp, D. (2017). Observational evidence of 3-D cloud effects in OCO-2 CO2 retrievals. Journal of Geophysical Research-Atmospheres, 122, 7064–7085.

    Article  CAS  Google Scholar 

  • Matsueda, H., Machida, T., Sawa, Y., & Niwa, Y. (2015). Long-term change of CO2 latitudinal distribution in the upper troposphere. Geophysical Research Letters, 42, 2508–2514.

    Article  CAS  Google Scholar 

  • Merrelli, A., Bennartz, R., O’Dell, C. W., & Taylor, T. E. (2015). Estimating bias in the OCO-2 retrieval algorithm caused by 3-D radiation scattering from unresolved boundary layer clouds. Atmospheric Measurement Techniques, 8, 1641–1656.

    Article  CAS  Google Scholar 

  • Nanda, A., Krishna Murthy, Y. L., & Suresh, H. S. (2013). Canopy trees leaf phenology in tropical dry deciduous and evergreen forests of Bhadra Wildlife Sanctuary Karnataka India. African Journal of Plant Science, 7(5), 170–175.

    Article  Google Scholar 

  • Nelson, R. R., Crisp, D., Ott, L. E., & O’Dell, C. W. (2016). High-accuracy measurements of total column water vapour from the Orbiting Carbon Observatory-2. Geophysical Research Letters, 43, 12261–12269.

    Article  Google Scholar 

  • Pathakoti, M., Sreenivas, G., & Dadhwal, V. K. (2016). Atmospheric CO2 retrieval from ground based FTIR spectrometer over Shadnagar, India. Atmospheric Measurement Techniques Discussions. https://doi.org/10.5194/amt-2016-177.

  • Patra, P. K., Canadell, J., Houghton, R. A., Piao, S. L., Ciais, P., Manjunath, K. R., Chhabra, A., Wang, T., Bhattacharya, T., Bousquet, P., Hartman, J., Ito, A., Mayorga, E., Niwa, Y., Raymond, P. A., Sarma, V. V. S. S., & Lasco, R. (2013). The carbon budget of South Asia. Biogeosciences, 10(513–527), 2013–2527. https://doi.org/10.5194/bg-10-513-2013.

    Article  Google Scholar 

  • Prasad, P., Rastogi, S., Singh, R. P. (2016). Study of CO2 variability over India using data from satellites. In: Proceedings of SPIE conference on remote sensing of the atmosphere, clouds, and precipitation, vol. 9876, 98763H.

  • Tiwari, Y. K., Revadekar, J. V., & Ravi Kumar, K. (2013). Variations in atmospheric carbon dioxide and its association with rainfall and vegetation over India. Atmospheric Environment, 68, 45–51.

    Article  CAS  Google Scholar 

  • Sanghavi, S., Lebsock, M., & Stephens, G. (2015). Sensitivity analysis of polarimetric O2 A-band spectra for potential cloud retrieval using OCO-2/GOSAT measurements. Atmospheric Measurement Techniques, 8, 3601–3616.

    Article  Google Scholar 

  • Schimel, D., Stephens, B. B., & Fischer, J. B. (2015). Effect of increasing CO2 on the terrestrial carbon cycle. Proceedings of the National Academy of Sciences, 112(2), 436–441.

    Article  CAS  Google Scholar 

  • Sun, K., Liu, X., Nowlan, C. R., Cai, Z., Chance, K., Frankenberg, C., Lee, R. A. M., Pollock, R., Rosenberg, R., & Crisp, D. (2017). Characterization of the OCO-2 instrument line shape functions using on-orbit solar measurements. Atmospheric Measurement Techniques, 10, 939–953.

    Article  Google Scholar 

  • Taylor, T. E., O’Dell, C. W., Frankenberg, C., Partian, P. T., Cronk, H. Q., Savtchenko, A., Nelson, R. R., et al. (2016). Orbiting Carbon Observatory-2 (OCO-2) cloud screening algorithms: validation against collocated MODIS and CALIOP data. Atmospheric Measurement Techniques, 9, 973–989.

    Article  CAS  Google Scholar 

  • Tiwari, Y. K., Vellore, R. K., Kumar, K. R., van der Schoot, M., & Cho, C. H. (2014). Influence of monsoons on atmospheric CO2 spatial variability and ground-based monitoring over India. Science of the Total Environment, 490, 570–578.

    Article  CAS  Google Scholar 

  • Tucker, C. J., & Sellers, P. J. (1986). Satellite remote sensing of primary production. International Journal of Remote Sensing, 22, 3827–3844.

    Google Scholar 

  • Turner, B. L., Lambin, E. F., & Reenberg, A. (2007). The Emergence of Land Change Science for Global Environmental Change and Sustainability. Proceedings of the National Academy of Sciences of the United States of America, 104, 20666–20671.

    Article  CAS  Google Scholar 

  • Worden, J. R., Doran, G., Kulawik, S., Eldering, A., Crisp, D., Frankenberg, C., O’Dell, C., et al. (2017). Evaluation and attribution of OCO-2 \( {X}_{CO_2} \) uncertainties. Atmospheric Measurement Techniques, 10, 2759–2771.

    Google Scholar 

  • Wunch, D., Wennberg, P. O., Osterman, G., Fisher, B., Naylor, B., Roehl, C. M., O’Dell, C., et al. (2017). Comparisons of the Orbiting Carbon Observatory-2 (OCO-2) \( {X}_{CO_2} \) measurements with TCCON. Atmospheric Measurement Techniques, 10, 2209–2238.

    Google Scholar 

  • Xu, L., & Baldocchi, D. D. (2004). Seasonal variation in carbon dioxide exchange over a Mediterranean annual grassland in California. Agriculture Forest Meteorology, 123, 79–96.

    Article  Google Scholar 

Download references

Acknowledgements

This research work is carried out as a part of ‘Energy and Mass Exchange in Vegetative Systems’ project of ISRO GBP. Authors express sincere thanks to Director SAC, Dr. Rajkumar, Dr. Prakash Chauhan and Dr. B.K. Bhattacharya, Senior Scientists, ISRO for providing an opportunity and guidance to undertake this study. We sincerely acknowledge data support from NASA OCO-2 project team. These data were produced by the OCO-2 project at the Jet Propulsion Laboratory, California Institute of Technology, and obtained from the ACOS/OCO-2 data archive maintained at the NASA Goddard Earth Science Data and Information Services Center. We are also thankful to Meteorological & Oceanographic Satellite Data Archival Centre, SAC, ISRO and NASA’s MODIS data processing team for data support. Authors wish to sincerely thank anonymous reviewers for their thoughtful comments towards improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abha Chhabra.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Terrestrial and Ocean Dynamics: India Perspective

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chhabra, A., Gohel, A. Dynamics of atmospheric carbon dioxide over different land cover types in India. Environ Monit Assess 191 (Suppl 3), 799 (2019). https://doi.org/10.1007/s10661-019-7681-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7681-z

Keywords

Navigation