Evaluating the habitat integrity index as a potential surrogate for monitoring the water quality of streams in the cerrado-caatinga ecotone in northern Brazil


Human activities have long been altering the natural conditions of streams, including the quality of their water, throughout most of Brazil. This problem is even worse in regions with low rainfall levels, such as the Brazilian Northeast, where water quality needs to be monitored more carefully. In this context, the present study investigated the effects of environmental integrity on the physicochemical characteristics of the streams of the basin of the Itapecuru River in northeastern Brazil. We tested the hypothesis that streams with lower habitat integrity would have higher conductivity, pH, and temperature, due to the reduced input of allochthonous organic matter and the greater washout of sediments to the stream bed. A total of 15 streams, of a sedimentary basin, were evaluated in the municipality of Caxias, in the Brazilian state of Maranhão, between June 2015, and July 2016; each stream was sampled once a month during the drought period in the region, where physicochemical measurements were taken to determine the environmental integrity of the stream through the application of a habitat integrity index. Streams with greater habitat integrity had lower conductivity, pH, and temperature and had higher discharge rates. The index proved to be not an effective tool for the evaluation of water quality, but was found to be important for the management of hydrographic basins by indicating important changes in environmental variables. In this case, the index can be used primarily for the management of hydrographic basins, given that it can be applied straightforwardly, it can be interpreted easily by decision-makers, and it can quantify alterations to the structure of the system with precision.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. Benone, N. L., Esposito, M. C., Juen, L., Pompeu, P. S., & Montag, L. F. A. (2017). Regional controls on physical habitat structure of Amazon streams. River Research and Applications, 33(5), 766–776. https://doi.org/10.1002/rra.3137.

    Article  Google Scholar 

  2. Brasil. (2005). Resolução CONAMA no 357, de 17 de março de 2005. Recuperado 7 de novembro de 2018, de http://www.siam.mg.gov.br/sla/download.pdf?idNorma=2747. Accessed 07 Nov 2018.

  3. Brasil, L. S., Shimano, Y., Batista, J. D., & Cabette, H. S. R. (2013). Effects of environmental factors on community structure of Leptophlebiidae (Insecta, Ephemeroptera) in Cerrado streams, Brazil. Iheringia. Série Zoologia, 103(3), 260–265. https://doi.org/10.1590/S0073-47212013000300008.

    Article  Google Scholar 

  4. Calvão, L. B., Nogueira, D. S., de Assis Montag, L. F., Lopes, M. A., & Juen, L. (2016). Are Odonata communities impacted by conventional or reduced impact logging? Forest Ecology and Management, 382, 143–150. https://doi.org/10.1016/j.foreco.2016.10.013.

    Article  Google Scholar 

  5. Carvalho, F. G., de Oliveira Roque, F., Barbosa, L., de Assis Montag, L. F., & Juen, L. (2018). Oil palm plantation is not a suitable environment for most forest specialist species of Odonata in Amazonia. Animal Conservation, 21(6), 526–533. https://doi.org/10.1111/acv.12427.

    Article  Google Scholar 

  6. Chauhan, A., & Verma, S. C. (2015). Impact of agriculture, urban and Forest land use on physico-chemical properties of water a review. International Journal of Current Microbiology and Applied Sciences, 4 Recuperado de http://www.ijcmas.com. Accessed 08 Oct 2018.

  7. Conroy, E., Turner, J. N., Rymszewicz, A., O’Sullivan, J. J., Bruen, M., Lawler, D., … Kelly-Quinn, M. (2016). The impact of cattle access on ecological water quality in streams: examples from agricultural catchments within Ireland. Science of the Total Environment, 547, 17–29. https://doi.org/10.1016/j.scitotenv.2015.12.120.

  8. Correia Filho, F. L., Gomes, É. R., Nunes, O. O., & Lopes Filho, J. B. (2011). Projeto cadastro de fontes de abastecimento por água subterrânea: estado do Maranhão: relatório diagnóstico do município de Caxias. Beirut: CPRM.

    Google Scholar 

  9. Coutinho, L. M. (2006). O conceito de bioma. Acta Botanica Brasilica. scielo . https://doi.org/10.1590/s0102-33062006000100002.

  10. Craig, D. A., & Galloway, M. M. (1987). Hydrodynamics of larval black flies. In Black flies (p. 155–170).

  11. Cunha, E. J., & Juen, L. (2017). Impacts of oil palm plantations on changes in environmental heterogeneity and Heteroptera (Gerromorpha and Nepomorpha) diversity. Journal of Insect Conservation, 21(1), 111–119. https://doi.org/10.1007/s10841-017-9959-1.

    Article  Google Scholar 

  12. Conceição, G. M., Ruggieri, A. C., & da Silva, W. L. (2014). Propriedades químicas de um neossolo quartzarênico, Maranhão, Brasil. Agrarian Academy, 1(1), 347–353.

  13. Dallas, H. F., & Ross-Gillespie, V. (2015). Sublethal effects of temperature on freshwater organisms, with special reference to aquatic insects. Water SA, 41. https://doi.org/10.4314/wsa.v41i5.15.

  14. Araújo, C. L., & Gualter, R. M. R. (2017). Caracterização morfofisiológica de bactérias nativas de solos do Cerrado isoladas de nódulos de feijão-caupi. Biotemas, 30(1), 25. https://doi.org/10.5007/2175-7925.2017v30n1p25.

  15. Carvalho, F. G., Pinto, N. S., de Oliveira Júnior, J. M. B., & Juen, L. (2013). Effects of marginal vegetation removal on Odonata communities. Acta Limnologica Brasiliensia, 25(1), 10–18. https://doi.org/10.1590/S2179-975X2013005000013.

  16. Castro, D. M. P., Dolédec, S., & Callisto, M. (2018). Land cover disturbance homogenizes aquatic insect functional structure in neotropical savanna streams. Ecological Indicators, 84, 573–582. https://doi.org/10.1016/j.ecolind.2017.09.030.

  17. Faria, A. P. J., Ligeiro, R., Callisto, M., & Juen, L. (2017). Response of aquatic insect assemblages to the activities of traditional populations in eastern Amazonia. Hydrobiologia, 802(1), 39–51. https://doi.org/10.1007/s10750-017-3238-8.

  18. Oliveira, D. G., Vargas, R. R., Saad, A. R., Arruda, R. D. O. M., Dalmas, F. B., & Azevedo, F. D. (2018). Land use and its impacts on the water quality of the Cachoeirinha Invernada watershed, Guarulhos (SP). Ambiente e Agua - An Interdisciplinary Journal of Applied Science, 13(1), 1. https://doi.org/10.4136/ambi-agua.2131.

  19. Dias-Silva, K., Cabette, H. S. R., Juen, L., & Jr, P. D. M. (2010). The influence of habitat integrity and physical-chemical water variables on the structure of aquatic and semi-aquatic Heteroptera. Zoologia (Curitiba), 27(6), 918–930. https://doi.org/10.1590/S1984-46702010000600013.

    Article  Google Scholar 

  20. Docile, T. N., Figueiró, R., Gil-Azevedo, L. H., & Nessimian, J. L. (2015). Water pollution and distribution of the black fly (Diptera: Simuliidae) in the Atlantic Forest, Brazil. Revista de Biología Tropical, 63(3), 683–693 Recuperado de https://revistas.ucr.ac.cr/index.php/rbt/article/view/16195/20117. Accessed 05 Oct 2018.

  21. Frascareli, D., de Souza Beghelli, F. G., da Silva, S. C., & Carlos, V. M. (2015). Heterogeneidade espacial e temporal de variáveis limnológicas no reservatório de Itupararanga associadas com o uso do solo na Bacia do Alto Sorocaba-SP. Revista Ambiente e Água, 10(4), 770–781. https://doi.org/10.4136/ambi-agua.1715.

    CAS  Article  Google Scholar 

  22. Juen, L., Cunha, E. J., Carvalho, F. G., Ferreira, M. C., Begot, T. O., Andrade, A. L., Shimano, Y., Leão, H., Pompeu, P. S., & Montag, L. F. A. (2016). Effects of oil palm plantations on the habitat structure and biota of streams in eastern Amazon. River Research and Applications, 32(10), 2081–2094. https://doi.org/10.1002/rra.3050.

    Article  Google Scholar 

  23. Jun, Y.-C., Kim, N.-Y., Kwon, S.-J., Han, S.-C., Hwang, I.-C., Park, J.-H., … Hwang, S.-J. (2011). Effects of land use on benthic macroinvertebrate communities: comparison of two mountain streams in Korea. In Annales de Limnologie - International Journal of Limnology (Vol. 47, p. S35–S49). EDP Sciences. https://doi.org/10.1051/limn/2011018.

  24. Kaufmann, P. R., & Faustini, J. M. (2012). Simple measures of channel habitat complexity predict transient hydraulic storage in streams. Hydrobiologia, 685(1), 69–95. https://doi.org/10.1007/s10750-011-0841-y.

    Article  Google Scholar 

  25. Klein, C. E., Pinto, N. S., Spigoloni, Z. A. V., Bergamini, F. M., de Melo, F. R., De Marco, P., & Juen, L. (2018). The influence of small hydroelectric power plants on the richness and composition of Odonata species in the Brazilian savanna. International Journal of Odonatology, 21(1), 33–44. https://doi.org/10.1080/13887890.2017.1419884.

    Article  Google Scholar 

  26. Lima, G. P., Neto, C. A. A. P., Amaral, Y. T., & Siqueira, G. M. (2016). Biogeographical characterization of the Maranhense eastern. Journal of Geospatial Modelling, 1(1), 1–12. https://doi.org/10.22615/jgm-1.1-5809 BIOGEOGRAPHICAL.

    Article  Google Scholar 

  27. Malaj, E., Guénard, G., Schäfer, R. B., & Von Der Ohe, P. C. (2016). Evolutionary patterns and physicochemical properties explain macroinvertebrate sensitivity to heavy metals. Ecological Applications, 26(4), 1249–1259. https://doi.org/10.1890/15-0346.

    Article  Google Scholar 

  28. Martins, I. S., Proença, V., & Pereira, H. M. (2014). The unusual suspect: land use is a key predictor of biodiversity patterns in the Iberian Peninsula. Acta Oecologica, 61, 41–50. https://doi.org/10.1016/j.actao.2014.10.005.

    Article  Google Scholar 

  29. Medeiros, R. N. (2015). Visões da natureza. In I. G. Sousa, J. M. Vianna, & R. L. Meneses (Eds.), Cartografias invisíveis: saberes e sentires de Caxias.

    Google Scholar 

  30. Mendes, T. P., Luiza-Andrade, A., Cabette, H. S. R., & Juen, L. (2018). How does environmental variation affect the distribution of dragonfly larvae (Odonata) in the Amazon-Cerrado transition zone in central Brazil? Neotropical Entomology, 47(1), 37–45. https://doi.org/10.1007/s13744-017-0506-2.

    CAS  Article  Google Scholar 

  31. Miguel, T. B., Oliveira-Junior, J. M. B., Ligeiro, R., & Juen, L. (2017). Odonata (Insecta) as a tool for the biomonitoring of environmental quality. Ecological Indicators, 81, 555–566. https://doi.org/10.1016/j.ecolind.2017.06.010.

    CAS  Article  Google Scholar 

  32. Mohtar, W. H. M. W., Maulud, K. N. A., Muhammad, N. S., Sharil, S., & Yaseen, Z. M. (2019). Spatial and temporal risk quotient based river assessment for water resources management. Environmental Pollution, 248, 133–144. https://doi.org/10.1016/j.envpol.2019.02.011.

    CAS  Article  Google Scholar 

  33. Montag, L. F. A., Leão, H., Quintana, Y., Winemiller, K. O., Keppeler, F. W., Benone, N. L., et al. (2018). Land cover, riparian zones and instream habitat influence stream fish assemblages in the eastern Amazon. Ecology of Freshwater Fish, 28(September), 1–13. https://doi.org/10.1111/eff.12455.

    Article  Google Scholar 

  34. Monteiro Júnior, C. d. S., Couceiro, S. R. M., Hamada, N., & Juen, L. (2013). Effect of vegetation removal for road building on richness and composition of Odonata communities in Amazonia, Brazil. International Journal of Odonatology, 16(2), 135–144. https://doi.org/10.1080/13887890.2013.764798.

    Article  Google Scholar 

  35. Nessimian, J. L., Venticinque, E. M., Zuanon, J., De Marco, P., Gordo, M., Fidelis, L., … Juen, L. (2008). Land use, habitat integrity, and aquatic insect assemblages in central Amazonian streams. In Hydrobiologia (Vol. 614, p. 117–131). https://doi.org/10.1007/s10750-008-9441-x.

  36. Neto, E. B. (2015). Desenvolvimento urbano. In I. G. Sousa, J. M. Vianna, & R. L. Meneses (Eds.), Cartografias invisíveis: saberes e sentires de Caxias.

    Google Scholar 

  37. Nogueira, D. S., Calvão, L. B., de Assis Montag, L. F., Juen, L., & De Marco, P. (2016). Little effects of reduced-impact logging on insect communities in eastern Amazonia. Environmental Monitoring and Assessment, 188(7), 441. https://doi.org/10.1007/s10661-016-5431-z.

    Article  Google Scholar 

  38. Phillips, H. R. P., Newbold, T., & Purvis, A. (2017). Land-use effects on local biodiversity in tropical forests vary between continents. Biodiversity and Conservation, 26(9), 2251–2270. https://doi.org/10.1007/s10531-017-1356-2.

    Article  Google Scholar 

  39. R Foundation for Statistical Computing. (2015). R. Development Core Team: R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing ISBN 3–900051–07-0.

    Google Scholar 

  40. Reis, D., Salazar, A., Machado, M., Couceiro, S., & Morais, P. (2017). Measurement of the ecological integrity of Cerrado streams using biological metrics and the index of habitat integrity. Insects, 8(1), 10.

    Article  Google Scholar 

  41. Rusydi, A. F. (2018). Correlation between conductivity and total dissolved solid in various type of water: a review. In IOP Conference Series: Earth and Environmental Science (Vol. 118, p. 012019). https://doi.org/10.1088/1755-1315/118/1/012019.

  42. Shimano, Y., & Juen, L. (2016). How oil palm cultivation is affecting mayfly assemblages in Amazon streams. Annales de Limnologie - International Journal of Limnology, 52, 35–45. https://doi.org/10.1051/limn/2016004.

    Article  Google Scholar 

  43. Siegloch, A. E., Schmitt, R., Spies, M., Petrucio, M., & Hernández, M. I. M. (2017). Effects of small changes in riparian forest complexity on aquatic insect bioindicators in Brazilian subtropical streams. Marine and Freshwater Research, 68(3), 519–527. https://doi.org/10.1071/MF15162.

    Article  Google Scholar 

  44. Silva, D. J., & Conceição, G. M. (2011). Rio Itapecuru: Caracterização Geoambiental e Socioambiental, Município de Caxias, Maranhão, Brasil. Scientia Plena, 7(1), 1–26 Recuperado de https://www.scientiaplena.org.br/sp/article/view/50. Accessed 25 Sept 2018.

  45. Silva, D. R. O., Herlihy, A. T., Hughes, R. M., Macedo, D. R., & Callisto, M. (2018). Assessing the extent and relative risk of aquatic stressors on stream macroinvertebrate assemblages in the neotropical savanna. Science of the Total Environment, 633, 179–188. https://doi.org/10.1016/j.scitotenv.2018.03.127.

    CAS  Article  Google Scholar 

  46. Skorupa, L. A., Costa, U. M. P., Cunha, P., Rossete, A. N., Fidalgo, E. C. C., Simões, M., … Choueri, R. B. (2017). Monitoramento da Qualidade da Água na Bacia HidrogrÁfica do Rio SuiÁ-Miçu. Embrapa Meio Ambiente. Recuperado de https://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/1080466. Accessed 08 Oct 2018.

  47. Strahler, A. (1957). Quantitative analysis of watershed geomorphology - Ierarquia de ordem de rio.Pdf. Transactions, American Geophysical Union, 38(6), 913–920.

    Article  Google Scholar 

  48. Strohschoen, A. A. G., Périco, E., de Lima, D. F. B., & Rempel, C. (2009). Estudo preliminar da qualidade da água dos rios Forqueta e Forquetinha, Rio Grande do Sul. Revista Brasileira de Biociências, 4849(4), 372–375 Recuperado de http://www.ufrgs.br/seerbio/ojs/index.php/rbb/article/view/1227. Accessed 05 Oct 2018.

  49. Tannus, J. L. S., & Assis, M. A. (2004). Composição de espécies vasculares de campo sujo e campo úmido em área de cerrado, Itirapina - SP, Brasil. Revista Brasileira de Botânica, 27(3), 489–506. https://doi.org/10.1590/S0100-84042004000300009.

    Article  Google Scholar 

  50. Torres, P., Cruz, C., Patiño, P., Escobar, J. C., & Pérez, A. (2010). Applying water quality indexes (WQI) to the use of water sources for human consumption. Ingeniería e Investigación, 30(2010), 86–95 Recuperado de http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-56092010000300007. Accessed 25 Sept 2018.

  51. Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R., & Cushing, C. E. (1980). The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences, 37(1), 130–137. https://doi.org/10.1139/f80-017.

    Article  Google Scholar 

  52. Zar, J. H. (1999). Biostatistical analysis. Bengaluru: Pearson Education India.

    Google Scholar 

Download references


Grants were also received from the National Council for Scientific and Technological Development (CNPq: number 307597/2016-4 to Leandro Juen).

Author information



Corresponding author

Correspondence to Daniel Silas Veras.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(XLSX 11 kb)


(DOCX 400 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Veras, D.S., Castro, E.R., Lustosa, G.S. et al. Evaluating the habitat integrity index as a potential surrogate for monitoring the water quality of streams in the cerrado-caatinga ecotone in northern Brazil. Environ Monit Assess 191, 562 (2019). https://doi.org/10.1007/s10661-019-7667-x

Download citation


  • Hydrographic basin
  • Environmental heterogeneity
  • Habitat integrity
  • Riparian forest
  • Monitoring of water quality