Skip to main content
Log in

Immunoassay for rapid on-site detection of glyphosate herbicide

Environmental Monitoring and Assessment Aims and scope Submit manuscript

Cite this article


Glyphosate is the most widespread herbicide and its global use is steadily increasing. Although glyphosate is considered to have low toxicity, its wide application has raised concerns about its effects on human health. The extensive use of glyphosate has risen a need of its continuous monitoring in drinking and surface waters to assure in accordance with the set standards. Within the present study, we have developed a novel assay for the on-site detection of glyphosate by combining flow-through technology with the high specificity of immunorecognition. The proposed biosensing system was based on the detection of fluorescence signal generated by the quantitative replacement of glyphosate in antigen-antibody complex with IgY-type anti-glyphosate antibodies on microbeads by synthetic 5-carboxytetramethylrhodamine (5-TAMRA) conjugated glyphosate. The working range of this assay was in low millimolar range and the time required for glyphosate detection around 0.5 h. The applicability of the immunoassay for glyphosate detection in surface water was tested and the biosensor results were validated with high-performance liquid chromatography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others


  • Aneja, A., Mathur, N., Bhatnagar, P. K., & Mathur, P. C. (2008). Triple-FRET technique for energy transfer between conjugated polymer and TAMRA dye with possible applications in medical diagnostics. Journal of Biological Physics, 34(5), 487–493.

    Article  CAS  Google Scholar 

  • Bhaskara, B., & Nagaraja, P. (2006). Direct sensitive spectrophotometric determination of glyphosate by using ninhydrin as a chromogenic reagent in formulations and environmental water samples. HCA, 89(11), 2686–2693.

    Article  CAS  Google Scholar 

  • Bhullar, B. S. (1998). Linker-assisted immunoassay for glyphosate. Patent WO2000014538A1.

  • Clegg, B. S., Stephenson, G. R., & Hall, J. C. (1999). Development of an enzyme-linked immunosorbent assay for the detection of glyphosate. Journal of Agricultural and Food Chemistry, 47(12), 5031–5037.

    Article  CAS  Google Scholar 

  • Cooper, M., Ebner, A., Briggs, M., Burrows, M., Gardner, N., Richardson, R., & West, R. (2004). Cy3BTM: Improving the performance of cyanine dyes. Journal of Fluorescence, 14(2), 145–150.

    Article  CAS  Google Scholar 

  • Coupe, R. H., Kalkhoff, S. J., & Capel, P. D. (2011). Fate and transport of glyphosate and aminomethylphoshonic acid in surface waters of agricultural basin. Pest Management Science, 68(1), 16–30.

    Article  CAS  Google Scholar 

  • Ding, X., & Yang, K. L. (2013). Development of an oligopeptide functionalized surface plasmon resonance biosensor for online detection of glyphosate. Analytical Chemistry, 85(12), 5727–5733.

    Article  CAS  Google Scholar 

  • Duke, S. O., & Powles, S. B. (2008). Glyphosate: a once in a century herbicide. Pest Management Science, 64, 319–325.

    Article  CAS  Google Scholar 

  • EC. European Commission. (1998). Council Directive 98/83/EC on the quality of water intended for human consumption. Accessed 16 Jan 2019.

  • EC. European Commission. (2018). Pesticides Database. Accessed 16 Jan 2019.

  • EFSA. European Food Safety Authority. (2015). Glyphosate: EFSA updates toxicological profile. Accessed 16 Jan 2019.

  • Ehlers, J. E., Rondan, N. G., Huynh, L. K., Pham, H., Marks, M., & Truong, T. N. (2007). Theoretical study on mechanisms of the epoxy-amine curing reaction. Macromolecules, 40(12), 4370–4377.

    Article  CAS  Google Scholar 

  • FAO/WHO. Food and Agriculture Organization of the United Nations/World Health Organization. (2019). CODEX Alimentarius International Food Standards. Accessed 16 Jan 2019.

  • FAO/WHO Meeting on Pesticide Residues. (1997). Pesticide residues in food 1997. Accessed 16 Jan 2019.

  • FAO/WHO Meeting on Pesticide Residues. (2016). Pesticide residues in food 2016. Accessed 16 Jan 2019.

  • Giesy, J. P., Stuart, D., & Solomon, K. R. (2000). Ecotoxicological risk assessment for Roundup® herbicide. Reviews of Environmental Contamination and Toxicology, 167, 35–120.

    CAS  Google Scholar 

  • Glass, R. L. (1981). Colorimetric determination of glyphosate in water after oxidation to orthophosphate. Analytical Chemistry, 53(6), 921–923.

    Article  CAS  Google Scholar 

  • González-Martínez, M. Á., Brun, E. M., Puchades, R., Maquieira, Á., Ramsey, K., & Rubio, F. (2005). Glyphosate immunosensor. Application for water and soil analysis. Analytical Chemistry, 77(13), 4219–4227.

    Article  CAS  Google Scholar 

  • Government of Canada. (2017). Canadian Drinking Water Guidelines. Accessed 16 Jan 2019.

  • Guyton, K. Z., Loomis, D., Grosse, Y., El Ghissassi, F., Benbrahim-Tallaa, L., Guha, N., Scoccianti, C., Mattock, H., & Straif, K. (2015). Carcinogenicity of tetrachlorvinphos, parathion, malathion, diazinon, and glyphosate. The Lancet Oncology, 16(5), 490–491.

    Article  Google Scholar 

  • Hamilton, D. J., Ambrus, A., Dieterle, R. M., Felsot, A. S., Harris, C. A., Holland, P. T., Katayama, A., Kurihara, N., Linders, J., Unsworth, J., & Wong, S.-S. (2003). Regulatory limits for pesticide residues in water (IUPAC Technical Report). Pure and Applied Chemistry, 75(8), 1123–1155.

    Article  CAS  Google Scholar 

  • Henderson, A. M., Gervais, J. A., Luukinen, B., Buhl, K., & Stone, D. (2015). Glyphosate technical fact sheet. Corvallis: National Pesticide Information Center, Oregon State University Extension Accessed 16 Jan 2019.

    Google Scholar 

  • Hensle, E. M., Esfandiari, N. M., Lim, S., & Blum, S. A. (2014). BODIPY fluorophore toolkit for probing chemical reactivity and for tagging reactive functional groups. European Journal of Organic Chemistry, 2014(16), 3347–3354.

    Article  CAS  Google Scholar 

  • Juronen, D., Kuusk, A., Kivirand, K., Rinken, A., & Rinken, T. (2018). Immunosensing system for rapid multiplex detection of mastitis-causing pathogens in milk. Talanta, 178, 949–954.

    Article  CAS  Google Scholar 

  • Lee, E. A., Zimmerman, L. R., Bhullar, B. S., & Thurman, E. M. (2002). Linker-assisted immunoassay and liquid chromatography/mass spectrometry for the analysis of glyphosate. Analytical Chemistry, 74(19), 4937–4943.

    Article  CAS  Google Scholar 

  • Lee, H. U., Shin, H. Y., Lee, J. Y., Song, Y. S., Park, C., & Kim, S. W. (2010). Quantitative detection of glyphosate by simultaneous analysis of UV spectroscopy and fluorescence using DNA-labeled gold nanoparticles. Journal of Agricultural and Food Chemistry, 58(23), 12096–12100.

    Article  CAS  Google Scholar 

  • Lee, H. U., Jung, D. U., Lee, J. H., Song, Y. S., Park, C., & Kim, S. W. (2013). Detection of glyphosate by quantitative analysis of fluorescence and single DNA using DNA-labeled fluorescent magnetic core-shell nanoparticles. Sensors and Actuators B, 177, 879–886.

    Article  CAS  Google Scholar 

  • Luijendijk, C. D., Beltman, W. H. J., & Wolters, M. F. (2003). Measures to reduce glyphosate runoff from hard surfaces. Wageningen: Plant Research International B.V.

    Google Scholar 

  • Martínez Gil, P., Laguarda-Miro, N., Camino, J. S., & Peris, R. M. (2013). Glyphosate detection with ammonium nitrate and humic acids as potential interfering substances by pulsed voltammetry technique. Talanta, 115, 702–705.

    Article  CAS  Google Scholar 

  • Mörtl, M., Németh, G. Č., Juracsek, J., Darvas, B., Kamp, L., Rubio, F., & Sézkács, A. (2013). Determination of glyphosate residues in Hungarian water samples by immunoassay. Microchemical Journal, 107, 143–151.

    Article  CAS  Google Scholar 

  • Myers, J. P., Antoniou, M. N., et al. (2018). Concerns over use of glyphosate-based herbicides and risks associated with exposures: a consensus statement. Environmental Health, 15(19), 1–13.

    Google Scholar 

  • Oliveira, G. C., Moccelini, S. K., Castilho, M., Terezo, A. J., Possavatz, J., Magalhães, M. R. L., & Dores, E. F. G. C. (2012). Biosensor based on atemoya peroxidase immobilised on modified nanoclay for glyphosate biomonitoring. Talanta, 98, 130–136.

    Article  CAS  Google Scholar 

  • Peedel, D., & Rinken, T. (2014). Rapid biosensing of Staphylococcus aureus bacteria in milk. Analytical Methods, 6(8), 2642–2647.

    Article  CAS  Google Scholar 

  • Rinken, A., Lavogina, D., & Kopanchuk, S. (2018). Assays with detection of fluorescence anisotropy: challenges and possibilities for characterizing ligand binding to GPCRs. Trends in Pharmacological Sciences, 39(2), 187–199.

    Article  CAS  Google Scholar 

  • Rojano-Delgado, A. M., Ruiz-Jiménez, J., de Castro, M. D., & De Prado, R. (2010). Determination of glyphosate and its metabolites in plant material by reversed-polarity CE with indirect absorptiometric detection. Electrophoresis, 31(8), 1423–1430.

    Article  CAS  Google Scholar 

  • Romieu, A., Massif, C., Rihn, S., Ulrich, G., Ziessel, R., & Renard, P. Y. (2013). The first comparative study of the ability of different hydrophilic groups to water-solubilise fluorescent BODIPY dyes. New Journal of Chemistry, 37(4), 1016–1027.

    Article  CAS  Google Scholar 

  • Royer, A., Beguin, S., Tabet, J. C., Hulot, S., Reding, M. A., & Communal, P. Y. (2000). Determination of glyphosate and aminomethylphosphonic acid residues in water by gas chromatography with tandem mass spectrometry after exchange ion resin purification and derivatization. Application on vegetable matrixes. Analytical Chemistry, 72(16), 3826–3832.

    Article  CAS  Google Scholar 

  • Rubio, F., Veldhuis, L. J., Clegg, B. S., Fleeker, J. R., & Hall, J. C. (2003). Comparison of a direct ELISA and an HPLC method for glyphosate determinations in water. Journal of Agricultural and Food Chemistry, 51(3), 691–696.

    Article  CAS  Google Scholar 

  • Silva, E. R., Segato, T. P., Coltro Wendell, K. T., Lima, R. S., Carrilho, E., & Mazo, L. H. (2013). Determination of glyphosate and AMPA on polyester-toner electrophoresis microchip with contactless conductivity detection. Electrophoresis, 34, 2107–2111.

    Article  CAS  Google Scholar 

  • Songa, E. A., Arotiba, O. A., Owino, J. H. O., Jahed, N., Baker, P. G. L., & Iwuoha, E. I. (2009a). Electrochemical detection of glyphosate herbicide using horseradish peroxidase immobilized on sulfonated polymer matrix. Bioelectrochemistry, 75(2), 117–123.

    Article  CAS  Google Scholar 

  • Songa, E., Waryo, T., Jahed, N., Baker, P., Kgarebe, B., & Iwuoha, E. (2009b). Electrochemical nanobiosensor for glyphosate herbicide and its metabolite. Electroanalysis, 21(3-5), 671–674.

    Article  CAS  Google Scholar 

  • Stalikas, C. D., & Konidari, C. N. (2001). Analytical methods to determine phosphonic and amino acid group-containing pesticides. Journal of Chromatography. A, 907(1-2), 1–19.

    Article  CAS  Google Scholar 

  • Todorovic, G. R., Rampazzo, N., Mentler, A., Blum, W. E. H., Eder, A., & Strauss, P. (2014). Influence of soil tillage and erosion on the dispersion of glyphosate and aminomethylphosphonic acid in agricultural soils. International Agrophysics, 28, 93–100.

    Article  CAS  Google Scholar 

  • Torstensson, L., Börjesson, E., & Stenström, J. (2005). Efficacy and fate of glyphosate on Swedish railway embankments. Pest Management Science, 61(9), 881–886.

    Article  CAS  Google Scholar 

  • Tu, M., Hurd, C. & Randall, J.M. (2001). Weed Control Methods Handbook: Tools and Techniques for Use in Natural Areas, Accessed 16 Jan 2019.

  • USDA. United States Department of Agriculture. (2018). International Maximum Residue Level Database. Accessed 16 Jan 2019.

  • USGS. U.S. Geological Survey. (2015). Estimated Annual Agricultural Pesticide Use. Accessed 16 Jan 2019.

  • Van Bruggen, A. H. C., He, M. M., Shin, K., Mai, V., Jeong, K. C., Finckh, M. R., & Morris, J. G. (2018). Environmental and health effects of the herbicide glyphosate. Science of the Total Environment, 616-617, 255–268.

    Article  CAS  Google Scholar 

  • Veiksina, S., Kopanchuk, S., & Rinken, A. (2010). Fluorescence anisotropy assay for pharmacological characterization of ligand binding dynamics to melanocortin 4 receptors. Analytical Biochemistry, 402(1), 32–39.

    Article  CAS  Google Scholar 

  • Veiksina, S., Kopanchuk, S., & Rinken, A. (2014). Budded baculoviruses as a tool for a homogeneous fluorescence anisotropy-based assay of ligand binding to G protein-coupled receptors: the case of melanocortin 4 receptors. Biochimica et Biophysica Acta, 1838(1 Pt B), 372–381.

    Article  CAS  Google Scholar 

  • Wang, D., Lin, B., Cao, Y., Guo, M., & Yu, Y. (2016). A highly selective and sensitive fluorescence detection method of glyphosate based on an immune reaction strategy of carbon dot labeled antibody and antigen magnetic beads. Journal of Agricultural and Food Chemistry, 64(30), 6042–6050.

    Article  CAS  Google Scholar 

  • Zheng, J., Zhang, H., Qu, J., Zhu, Q., & Chen, X. (2013). Visual detection of glyphosate in environmental water samples using cysteamine-stabilized gold nanoparticles as colorimetric probe. Analytical Methods, 5(4), 917–924.

    Article  CAS  Google Scholar 

Download references


The authors would like to thank Dr. Riin Rebane from the Estonian Environmental Research Center for her contribution to the validation of biosensor results.


This work was supported by the Estonian Research Council Grant No. IUT 20-17.

Author information

Authors and Affiliations


Corresponding author

Correspondence to E. Viirlaid.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Figure 1S.

1H NMR spectrum of N-(hept-6-ynoyl)-N-(phosphonomethyl)glycine. (DOCX 163 kb)

Figure 2S.

13C NMR spectrum of N-(hept-6-ynoyl)-N-(phosphonomethyl)glycine. (DOCX 104 kb)

Figure 3S.

1H-1H COSY NMR spectrum of N-(hept-6-ynoyl)-N-(phosphonomethyl)glycine. (DOCX 113 kb)

Figure 4S.

1H-13C HSQC NMR spectrum of N-(hept-6-ynoyl)-N-(phosphonomethyl)glycine. (DOCX 95 kb)

Figure 5S.

1H-13C HMBC NMR spectrum of N-(hept-6-ynoyl)-N-(phosphonomethyl)glycine. (DOCX 107 kb)

Figure 6S.

HPLC-MS spectra of 5-TAMRA-glyphosate. From above: a.) Ion chromatogram with TIC, m/z=396 and m/z=788, b.) Extracted mass spectrum from 10,52 min datapoint, c.) Chromatogram at wavelength 280 nm, d.) Chromatogram at wavelength 546 nm. (DOCX 170 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viirlaid, E., Ilisson, M., Kopanchuk, S. et al. Immunoassay for rapid on-site detection of glyphosate herbicide. Environ Monit Assess 191, 507 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: