Skip to main content

Advertisement

Log in

Assessing climate boundary shifting under climate change scenarios across Nepal

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

A Correction to this article was published on 01 November 2019

This article has been updated

Abstract

This study assesses the climate boundary shifts from the historical time to near/mid future by using a slightly modified Köppen–Geiger (KG) classification scheme and presents comprehensive pictures of historical (1960–1990) and projected near/mid future (1950s: 2040–2060/1970s: 2060–2080) climate classes across Nepal. Ensembles of three selected general circulation models (GCMs) under two Representative Concentration Pathways (RCP 4.5 and RCP 8.5) were used for projected future analysis. During the 1950s, annual average temperature is expected to increase by 2.5 °C under RCP 8.5. Similarly, during the 1970s, it is even anticipated to rise by 3.6 °C under RCP 8.5. The rate of temperature rise is higher in the non-monsoon period than in monsoon period. During the 1970s, annual precipitation is projected to increase by 8.1% under RCP 8.5. Even though the precipitation is anticipated to increase in the future in annual scale, winter seasons are estimated to be drier by more than 15%. This study shows significant increments of tropical (Am and Aw) and arid (BSk) climate types and reductions of temperate (Cwa and Cwb) and polar (ET and EF). Noticeably, the reduction of the areal coverage of polar frost (EF) is considerably high. In general, about 50% of the country’s area is covered by the temperate climate (Cwa and Cwb) in baseline scenario and it is expected to reduce to 45% under RCP 4.5 and 42.5% under RCP 8.5 during the 1950s, and 42% under RCP 4.5 and 39% under RCP 8.5 during the 1970s. Importantly, the degree of climate boundary shifts is quite higher under RCP 8.5 than RCP 4.5, and likewise, the degree is higher during the 1970s than the 1950s. We believe this study to facilitate the identification of regions in which impacts of climate change are notable for crop production, soil management, and disaster risk reduction, requiring a more detailed assessment of adaptation measures. The assessment of climate boundary shifting can serve as valuable information for stakeholders of many disciplines like water, climate, transport, energy, environment, disaster, development, agriculture, and tourism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

  • 01 November 2019

    The original version of this article unfortunately contained an error. All “50s” and “70s” were replaced by “1950s” and “1970s” throughout the published paper.

References

  • Acharya, B. K., Cao, C., Xu, M., Khanal, L., Naeem, S., & Pandit, S. (2018). Present and future of dengue fever in Nepal: mapping climatic suitability by ecological niche model. International Journal of Environmental Research and Public Health, 1–15. https://doi.org/10.3390/ijerph15020187.

    Article  Google Scholar 

  • Aparecido LE de, O., Rolim G de, S., Richetti, J., de, S. P. S., & Johann, J. A. (2016). Köppen, Thornthwaite and Camargo climate classifications for climatic zoning in the State of Paraná, Brazil. Ciência e Agrotecnologia, 40(4), 405–417. https://doi.org/10.1590/1413-70542016404003916.

    Article  Google Scholar 

  • Aryal, A., Brunton, D., & Raubenheimer, D. (2014). Impact of climate change on human-wildlife-ecosystem interactions in the Trans-Himalaya region of Nepal. Theoretical and Applied Climatology, 115, 517–529. https://doi.org/10.1007/s00704-013-0902-4.

    Article  Google Scholar 

  • Baidya, S. K., Shrestha, M. L., & Sheikh, M. M. (2008). Trends in daily climatic extremes of temperature and precipitation in Nepal. Journal of Hydrology and Meteorology, 5(1), 38–51.

    Google Scholar 

  • Basalirwa, C. P. K. (1995). Delineation of Uganda into climatological rainfall zones using the method of principal component analysis. International Journal of Climatology, 15(10), 1161–1177. https://doi.org/10.1002/joc.3370151008.

    Article  Google Scholar 

  • Beck, C., Grieser, J., Kottek, M., Rubel, F., & Rudolf, B. (2006). Characterizing global climate change by means of Koppen climate classification. In Annual Report. Duetscher Wetterdienst. Hamburg, Germany.

  • Beck, H. E., Zimmermann, N. E., Mcvicar, T. R., Vergopolan, N., Berg, A., & Wood, E. F. (2018). Data descriptor: Present and future Köppen-Geiger climate classification maps at 1 -km resolution. Scientific Data, 5, 1–12. https://doi.org/10.1038/sdata.2018.214.

    Article  Google Scholar 

  • Bharati, L., Gurung, P., Maharjan, L., & Bhattarai, U. (2016). Past and future variability in the hydrological regime of the Koshi Basin, Nepal. Hydrological Sciences Journal, 61(1), 79–93. https://doi.org/10.1080/02626667.2014.952639.

    Article  Google Scholar 

  • Bhatta, B., Shrestha, S., Shrestha, P. K., & Talchabhadel, R. (2019). Evaluation and application of a SWAT model to assess the climate change impact on the hydrology of the Himalayan River Basin. CATENA, 181(May), 104082. https://doi.org/10.1016/j.catena.2019.104082.

    Article  Google Scholar 

  • Bohlinger, P. (2018). A comprehensive view on trends in extreme precipitation in Nepal and their spatial distribution. International Journal of Climatology, 38, 1833–1845. https://doi.org/10.1002/joc.5299.

    Article  Google Scholar 

  • Dahal, V., Shakya, N. M., & Bhattarai, R. (2016). Estimating the impact of climate change on water availability in Bagmati Basin, Nepal. Environmental Processes, 3(1), 1–17. https://doi.org/10.1007/s40710-016-0127-5.

    Article  Google Scholar 

  • de Camargo, A. P. (1991). Classificação climática para zoneamento de aptidão agroclimática. Revista Brasileira de Agrometeorologia, 8, 126–131.

    Google Scholar 

  • Dhimal, M., Hara, R. B. O., Karki, R., Thakur, G. D., Kuch, U., & Ahrens, B. (2014). Spatio-temporal distribution of malaria and its association with climatic factors and vector-control interventions in two high-risk districts of Nepal. Malaria Journal, 13, 1–14.

    Article  Google Scholar 

  • Feddema, J. J. (2005). A revised Thornthwaite-type global climate classification. Physical Geography, 26(6), 442–466. https://doi.org/10.2747/0272-3646.26.6.442.

    Article  Google Scholar 

  • Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302–4315. https://doi.org/10.1002/joc.5086.

    Article  Google Scholar 

  • Flohn, H. (1950). Neue Anschauungen über die allgemeine zirkulation der atmosphareund ihre klimatische bedeutung. Erdkunde, 4, 141–162.

    Article  Google Scholar 

  • Fraedrich, K., Gerstengarbe, F. W., & Werner, P. C. (2001). Climate shifts during the last century. Climate Change, 50, 405–417.

    Google Scholar 

  • Geiger, R. (1954). Klassifikation der klimate nach W. Köppen. In J. Bartels & P. Bruggencate (Eds.), Landolt- Börnstein – Zahlenwerte und Funktionen aus physik, chemie, astronomie (Geophysik und Technik, Alte Serie 3) (pp. 603–607).

    Google Scholar 

  • Gnanadesikan, A., & Stouffer, R. J. (2006). Diagnosing atmosphere-ocean general circulation model errors relevant to the terrestrial biosphere using the Köppen climate classification. Geophysical Research Letters, 33, 1–5. https://doi.org/10.1029/2006GL028098.

    Article  Google Scholar 

  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978. https://doi.org/10.1002/joc.1276.

    Article  Google Scholar 

  • HMG. (1975). Mechidekhi Mahakali (I-IV Volumes). Department of Information, Ministry of Communication.

  • Holdridge, L. R. (1967). Life zone ecology. San Jose: Costa Rica, Tropical Science Center.

    Google Scholar 

  • Jha, S., & Karn, A. (2001). Climatic analogues for the administrative districts of Nepal. Tribhuvan University Journal, 55–64.

  • Júnior, A. D. S., & De Carvalho, L. G. (2012). Application of the Köppen classification for climatic zoning in the state of Minas Gerais, Brazil. Theoretical and Applied Climatology, 108(1-2), 1–7. https://doi.org/10.1007/s00704-011-0507-8.

    Article  Google Scholar 

  • Jylhä, K., Tuomenvirta, H., Ruosteenoja, K., Niemi-Hugaerts, H., Keisu, K., & Karhu, J. A. (2010). Observed and projected future shifts of climatic zones in Europe and their use to visualize climate change information. Weather, Climate, and Society, 2(2), 148–167. https://doi.org/10.1175/2010wcas1010.1.

    Article  Google Scholar 

  • Kadel, I., Yamazaki, T., Iwasaki, T., & Abdillah, M. R. (2018). Projection of future monsoon precipitation over the central Himalayas by CMIP5 models under warming scenarios. Climate Research, 75, 1–21.

    Article  Google Scholar 

  • Kalvova, J., Halenka, T., Bezpalcova, K., & Nemesova, I. (2003). Köppen climate types in observed and simulated climates. Studia Geophysica et Geodaetica, 47, 185–202.

    Article  Google Scholar 

  • Karki, R., Talchabhadel, R., Aalto, J., & Baidya, S. K. (2016). New climatic classification of Nepal. Theoretical and Applied Climatology, 125(3–4), 799–808. https://doi.org/10.1007/s00704-015-1549-0.

    Article  Google Scholar 

  • Karki, R., Hasson, S., Schickhoff, U., & Scholten, T. (2017). Rising precipitation extremes across Nepal. Climate, 5(4), 1–25. https://doi.org/10.3390/cli5010004.

    Article  Google Scholar 

  • Köppen, W. (1884). Die Wärmezonen der Erde, nach der Dauer der heissen, gemässigten und kalten Zeit und nach der Wirkung der Wärme auf die organische Welt betrachtet (The thermal zones of the Earth according to the duration of hot, moderate and cold periods and of the impac). Meteorol. Z., 1, 215–226.

    Google Scholar 

  • Köppen, W. (1900). Versuch einer Klassifikation der Klimate, Vorzugsweise nach ihren Beziehungen zur Pflanzenwelt [Attempted climate classification in relation to plant distributions]. Geographische Zeitschrift, 6, 593–611 657–679.

    Google Scholar 

  • Köppen, W. (1918). Klassifikation der Klimate nach Temperatur, Niederschlag und Jahresablauf (Classification of climates according to temperature, precipitation and seasonal cycle). Petermanns Geogr. Mitt., 64, 193–203 243–248.

    Google Scholar 

  • Köppen W. (1936). Das geographische System der Klimate. Handbuch der Klimatologie (c): 7–30. https://doi.org/10.3354/cr01204.

    Article  Google Scholar 

  • Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15(3), 259–263. https://doi.org/10.1127/0941-2948/2006/0130.

    Article  Google Scholar 

  • Kriticos, D. J., Webber, B. L., Leriche, A., Ota, N., Macadam, I., Bathols, J., & Scott, J. K. (2012). CliMond: global high-resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods in Ecology and Evolution, 3, 53–64. https://doi.org/10.1111/j.2041-210X.2011.00134.x.

    Article  Google Scholar 

  • Lohmann, U., Sausen, R., Bengtsson, L., Cubasch, U., Perlwitz, J., & Roecknerl, E. (1993). The Koppen climate classification as a diagnostic tool for general circulation models. Climate Research, 3, 177–193.

    Article  Google Scholar 

  • Mishra, Y., Nakamura, T., Babel, M. S., Ninsawat, S., & Ochi, S. (2018). Impact of climate change on water resources of the Bheri River Basin, Nepal. Water (Switzerland), 10(2), 1–21. https://doi.org/10.3390/w10020220.

    Article  CAS  Google Scholar 

  • Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., Van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A., Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P., & Wilbanks, T. J. (2010). The next generation of scenarios for climate change research and assessment. Nature, 463(7282), 747–756. https://doi.org/10.1038/nature08823.

    Article  CAS  Google Scholar 

  • Nayava, J. L. (1975). Climates of Nepal. The Himalayan Review VII, 9–12.

  • Pandey, V. P., Dhaubanjar, S., Bharati, L., & Thapa, B. R. (2019). Hydrological response of Chamelia watershed in Mahakali Basin to climate change. Science of the Total Environment. Elsevier B.V., 650, 365–383. https://doi.org/10.1016/j.scitotenv.2018.09.053.

    Article  CAS  Google Scholar 

  • Peel, M. C., Finlayson, B. L., & Mcmahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11, 1633–1644.

    Article  Google Scholar 

  • Russell, R. J. (1931). Dry climates of the United States: I climatic map. University of California, Publications in Geography, 5, 1–41.

    Google Scholar 

  • Schickhoff, U., Bobrowski, M., Böhner, J., Bürzle, B., Chaudhary, R. P., Gerlitz, L., Heyken, H., Lange, J., Muller, M., Scholten, T., Schwab, N., & Wedegartner, R. (2015). Do Himalayan treelines respond to recent climate change? An evaluation of sensitivity indicators. Earth System Dynamics, 6, 245–265. https://doi.org/10.5194/esd-6-245-2015.

    Article  Google Scholar 

  • Shrestha, A. B., & Aryal, R. (2011). Climate change in Nepal and its impact on Himalayan glaciers. Regional Environmental Change, 11, 65–77. https://doi.org/10.1007/s10113-010-0174-9.

    Article  Google Scholar 

  • Shrestha, A. B., Wake, C. P., Mayewski, P. A., & Dibb, J. E. (1999). Maximum temperature trends in the Himalaya and its vicinity: An analysis based on temperature records from Nepal for the period 1971 – 94. Journal of Climate, 12, 2775–2786.

    Article  Google Scholar 

  • Shrestha, U. B., Gautam, S., & Bawa, K. S. (2012). Widespread climate change in the Himalayas and associated changes in local ecosystems. PLoS ONE, 7(5), 1–10. https://doi.org/10.1371/journal.pone.0036741.

    Article  CAS  Google Scholar 

  • Shrestha, S., Shrestha, M., & Babel, M. S. (2016). Modelling the potential impacts of climate change on hydrology and water resources in the Indrawati River Basin, Nepal. Environmental Earth Sciences, 75(4), 1–13. https://doi.org/10.1007/s12665-015-5150-8.

    Article  Google Scholar 

  • Stern, H., DeHoedt, G. (1999). Objective classification of Australian climates. 8th Conf. on Aviation, Range and Aerospace Meteorology. American Meteorological Society: Dallas, Texas, 87–91.

  • Talchabhadel, R., Karki, R., Thapa, B. R., Maharjan, M., & Parajuli, B. (2018a). Spatio-temporal variability of extreme precipitation in Nepal. International Journal of Climatology, 38, 4296–4313. https://doi.org/10.1002/joc.5669.

    Article  Google Scholar 

  • Talchabhadel, R., Nakagawa, H., & Kawaike, K. (2018b). Spatial and temporal variability of precipitation in southwestern Bangladesh. Journal of Japanese Society of Civil Engineers, Ser B1 (Hydraulic Engineering), 74(5), 289–294.

    Google Scholar 

  • Talchabhadel, R., Karki, R., Yadav, M., Maharjan, M., Aryal, A., & Thapa, B. R. (2019). Spatial distribution of soil moisture index across Nepal: A step towards sharing climatic information for agricultural sector. Theoretical and Applied Climatology. https://doi.org/10.1007/s00704-019-02801-3.

    Article  Google Scholar 

  • Thapa, G. J., Wikramanayake, E., & Forrest, J. (2015). Climate-change impacts on the biodiversity of the Terai Arc Landscape and the Chitwan-Annapurna Landscape. Kathmandu.

  • Thornthwaite, C. W. (1948). An Approach toward a rational classification of climate. Geographical Review, 38(1), 55–94. https://doi.org/10.2307/210739.

    Article  Google Scholar 

  • Turner, A. G., & Annamalai, H. (2012). Climate change and the South Asian summer monsoon. Nature Climate Change, 2(8), 587–595. https://doi.org/10.1038/nclimate1495.

    Article  Google Scholar 

  • Uddin, K., Matin, M. A., & Maharjan, S. (2018). Assessment of land cover change and its impact on changes in soil erosion risk in Nepal. sustainability, 10, 1–20. https://doi.org/10.3390/su10124715.

    Article  Google Scholar 

  • Van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Nakicenovic, N., Smith, S. J., & Rose, S. K. (2011). The representative concentration pathways: An overview. Climate Change, 109, 5–31. https://doi.org/10.1007/s10584-011-0148-z.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the DHM, Government of Nepal, for the permission to use meteorological data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rocky Talchabhadel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 92.1 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talchabhadel, R., Karki, R. Assessing climate boundary shifting under climate change scenarios across Nepal. Environ Monit Assess 191, 520 (2019). https://doi.org/10.1007/s10661-019-7644-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7644-4

Keywords

Navigation