Aerts, R., & Ludwig, F. (1997). Water-table changes and nutritional status affect trace gas emissions from laboratory columns of peatland soils. Soil Biology and Biogeochemistry, 29, 1691–1698.
CAS
Google Scholar
Alm, J., Talanov, A., Saarnio, S., Silvola, J., Ikkonen, E., Aaltonen, H., Nykänen, H., & Martikainen, P. J. (1997). Reconstruction of the carbon balance for microsites in a boreal oligotrophic fen, Finland. Oecologia, 110, 423–431.
CAS
Google Scholar
Beer, J., & Blodau, C. (2007). Transport and thermodynamics constrain belowground carbon turnover in a northern peatland. Geochimica et Cosmochimica Acta, 71, 2989–3002.
CAS
Google Scholar
Berger, S., Jang, I., Seo, J., Kang, H., & Gebauer, G. (2013). A record of N2O and CH4 emissions and underlying soil processes of Korean rice paddies as affected by different water management practices. Biogeochemistry, 115, 317–322.
CAS
Google Scholar
Berger, S., Gebauer, G., Blodau, C., & Knorr, K.-H. (2017). Peatlands in a eutrophic world – assessing the state of a poor fen-bog transition in southern Ontario, Canada, after long term nutrient input and altered hydrological conditions. Soil Biology and Biochemistry, 114, 131–144.
CAS
Google Scholar
Berger, S., Praetzel, L. S. E., Goebel, M., Blodau, C., & Knorr, K. H. (2018). Differential response of carbon cycling to long-term nutrient input and altered hydrological conditions in a continental Canadian peatland. Biogeosciences, 15, 885–903.
CAS
Google Scholar
Blodau, C. (2002). Carbon cycling in peatlands - a review of processes and controls. Environmental Reviews, 10(2), 111–134.
CAS
Google Scholar
Bragazza, L., Buttler, A., Habermacher, J., Brancaleoni, L., Gerdol, R., Fritze, H., Hanajík, P., Laiho, R., & Johnson, D. (2012). High nitrogen deposition alters the decomposition of bog plant litter and reduces carbon accumulation. Global Change Biology, 18, 1163–1172.
Google Scholar
Brix, H., Sorrell, B. K., & Orr, P. T. (1992). Internal pressurization and convective gas-flow in some emergent fresh-water macrophytes. Limnology and Oceanography, 37, 1420–1433.
Google Scholar
Brown, M. G., Humphreys, E. R., Moore, T. R., Roulet, N. T., & Lafleur, P. M. (2014). Evidence for a nonmonotonic relationship between ecosystem-scale peatland methane emissions and water table depth. Journal of Geophysical Research – Biogeosciences, 119, 826–835.
CAS
Google Scholar
Bubier, J. L., Moore, T. R., & Bellisario, L. (1995). Ecological controls on methane emissions from a Northern peatland complex in the zone of discontinuous permafrost, Manitoba, Canada. Global Biogeochemical Cycles, 9, 455–470.
CAS
Google Scholar
Bubier, J. L., Moore, T. R., & Bledzki, L. A. (2007). Effects of nutrient addition on vegetation and carbon cycling in an ombrotrophic bog. Global Change Biology, 13, 1168–1186.
Google Scholar
Burba, G. (2013). Eddy covariance method for scientific, industrial, agricultural, and regulatory applications. In A field book on measuring ecosystem gas exchange and areal emission rates. Lincoln: LI-COR Biosciences ISBN 978-0-615-76827-4.
Google Scholar
Burba, G., Schmidt, A., Scott, R. L., Nakai, T., Kathilankal, J., Fratini, G., Hanson, C., Law, B., McDermitt, D. K., Eckles, R., Furtaw, M., & Velgersdyk, M. (2012). Calculating CO2 and H2O eddy covariance fluxes from an enclosed gas analyzer using an instantaneous mixing ratio. Global Change Biology, 18, 385–399.
Google Scholar
Burger, M., Berger, S., Spangenberg, I., & Blodau, C. (2016). Summer fluxes of methane and carbon dioxide from a pond and floating mat in a continental Canadian peatland. Biogeosciences, 13, 3777–3791.
CAS
Google Scholar
Dancey, C., & Reidy, J. (2004). Statistics without maths for psychology: using SPSS for Windows. London: Pearson Education Limited.
Google Scholar
Dise, N. B., Gorham, E., & Verry, E. S. (1993). Environmental factors controlling methane emissions from peatlands in Northern Minnesota. Journal of Geophysical Research-Atmospheres, 98(D6), 10583–10594.
Google Scholar
Eriksson, T., Öquist, M. G., & Nilsson, M. B. (2010). Production and oxidation of methane in a boreal mire after a decade of increased temperature and nitrogen and sulfur deposition. Global Change Biology, 16, 2130–2144.
Google Scholar
Foken, T., Göckede, M., Mauder, M., et al. (2004). Post-field data quality control. In X. Lee, W. Massman, & B. Law (Eds.), Handbook of micrometeorology: a guide for surface flux measurement and analysis (pp. 181–208). Dordrecht: Kluwer Academic Publishers.
Google Scholar
Forbrich, I., Kutzbach, L., Wille, C., Becker, T., Wu, J., & Wilmking, M. (2011). Cross-evaluation of measurements of peatland methane emissions on microform and ecosystem scales using high-resolution landcover classification and source weight modelling. Agricultural and Forest Meteorology, 151, 864–874.
Google Scholar
Frolking, S., Roulet, N. T., Moore, T. R., et al. (2002). Modeling seasonal to annual carbon balance of Mer Bleue Bog, Ontario, Canada. Global Biogeochemical Cycles, 16, 4-1–4-21.
Google Scholar
Goldberg, S. D., Knorr, K.-H., Blodau, C., et al. (2010). Impact of altering the water table height of an acidic fen on N2O and NO fluxes and soil concentrations. Global Change Biology, 16(1), 220–233.
Google Scholar
GRCA. (2015). Luther marsh wildlife management area. http://www.grandriver.ca. Accessed 15 Sep 2015.
Hartley, I. P., Hill, T. C., Wade, T. J., Clement, R. J., Moncrieff, J. B., Prieto-Blanco, A., Disney, M. I., Huntley, B., Williams, M., Howden, N. J. K., Wookey, P. A., & Baxter, R. (2015). Quantifying landscape-level methane fluxes in subarctic Finland using a multiscale approach. Global Change Biology, 21, 3712–3725.
Google Scholar
Helfter, C., Campbell, C., Dinsmore, K. J., Drewer, J., Coyle, M., Anderson, M., Skiba, U., Nemitz, E., Billett, M. F., & Sutton, M. A. (2015). Drivers of long-term variability in CO2 net ecosystem exchange in a temperate peatland. Biogeosciences, 12, 1799–1811.
CAS
Google Scholar
Hendriks, D. M. D., van Huissteden, J., & Dolman, A. J. (2010). Multi-technique assessment of spatial and temporal variability of methane fluxes in a peat meadow. Agricultural and Forest Meteorology, 150, 757–774.
Google Scholar
Henneberg, A., Sorrell, B. K., & Brix, H. (2012). Internal methane transport through Juncus effusus: experimental manipulation of morphological barriers to test above- and below-ground diffusion limitation. New Phytologist, 196, 799–806.
CAS
Google Scholar
IPCC. (2007). Climate change 2007: the physical science basis: contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.
Google Scholar
IPCC. (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp, https://doi.org/10.1017/CBO9781107415324.
Joabsson, A., Christensen, T. R., & Wallen, B. (1999). Vascular plant controls on methane emissions from northern peatforming wetlands. Trends in Ecology & Evolution, 14, 385–388.
CAS
Google Scholar
Kellner, E., Baird, A. J., Oosterwoud, M., Harrison, K., & Waddington, J. M. (2006). Effect of temperature and atmospheric pressure on methane (CH4) ebullition from near-surface peats. Geophysical Research Letters, 33. https://doi.org/10.1029/2006gl027509.
Kljun, N., Kastner-Klein, P., Fedorovich, E., & Rotach, M. W. (2004). Evaluation of Lagrangian footprint model using data from wind tunnel convective boundary layer. Agricultural and Forest Meteorology, 127, 189–201.
Google Scholar
Koebsch, F., Jurasinski, G., Koch, M., et al. (2015). Controls for multi-scale temporal variation in ecosystem methane exchange during the growing season of a permanently inundated fen. Agricultural and Forest Meteorology, 204, 95–105.
Google Scholar
Kormann, R., & Meixner, F. X. (2001). An analytical footprint model for non-neutral stratification. Boundary-Layer Meteorology, 99, 207–224.
Google Scholar
Krumholz, L. R., Hollenback, J. L., Roskes, S. J., & Ringelberg, D. B. (1995). Methanogenesis and methanotrophy within a Sphagnum peatland. FEMS Microbiology Ecology, 18, 215–224.
CAS
Google Scholar
Laanbroek, H. J. (2010). Methane emission from natural wetlands: interplay between emergent macrophytes and soil microbial processes. A mini-review. Annals of Botany, 105, 141–153.
CAS
Google Scholar
Lafleur, P. M., Roulet, N. T., Bubier, J. L., et al. (2003). Interannual variability in the peatland-atmosphere carbon dioxide exchange at an ombrotrophic bog. Global Biogeochemical Cycles, 17. https://doi.org/10.1029/2002GB001983.
Lai, D. Y. F. (2009). Methane dynamics in northern peatlands: a review. Pedosphere, 19, 409–421.
CAS
Google Scholar
Lai, D. Y. F., Moore, T. R., & Roulet, N. T. (2014). Spatial and temporal variations of methane flux measured by autochambers in a temperate ombrotrophic peatland. Journal of Geophysical Research – Biogeosciences, 119, 864–880.
CAS
Google Scholar
Laine, J., Silvola, J., Tolonen, K., et al. (1996). Effect of water-level drawdown on global climatic warming: northern peatlands. Ambio, 25, 179–184.
Google Scholar
Larmola, T., Bubier, J. L., Kobyljanec, C., Basiliko, N., Juutinen, S., Humphreys, E., Preston, M., & Moore, T. R. (2013). Vegetation feedbacks of nutrient addition lead to a weaker carbon sink in an ombrotrophic bog. Global Change Biology, 19, 3729–3739.
Google Scholar
Leppälä, M., Oksanen, J., & Tuittila, E. S. (2011). Methane flux dynamics during mire succession. Oecologia, 165, 489–499.
Google Scholar
Leppelt, T., Dechow, R., Gebbert, S., Freibauer, A., Lohila, A., Augustin, J., Drösler, M., Fiedler, S., Glatzel, S., Höper, H., Järveoja, J., Lærke, P. E., Maljanen, M., Mander, Ü., Mäkiranta, P., Minkkinen, K., Ojanen, P., Regina, K., & Strömgren, M. (2014). Nitrous oxide emission budgets and land-use-driven hotspots for organic soils in Europe. Biogeosciences, 11, 6595–6612.
Google Scholar
Levy, P. E., Burden, A., Cooper, M. D. A., Dinsmore, K. J., Drewer, J., Evans, C., Fowler, D., Gaiawyn, J., Gray, A., Jones, S. K., Jones, T., McNamara, N. P., Mills, R., Ostle, N., Sheppard, L. J., Skiba, U., Sowerby, A., Ward, S. E., & Zieliński, P. (2012). Methane emissions from soils: synthesis and analysis of a large UK data set. Global Change Biology, 18, 1657–1669.
Google Scholar
Long, K. D., Flanagan, L. B., & Cai, T. (2010). Diurnal and seasonal variation in methane emissions in a northern Canadian peatland measured by eddy covariance. Global Change Biology, 16, 2420–2435.
Google Scholar
Martikainen, P. J., Nykänen, H., Alm, J., & Silvola, J. (1995). Change in fluxes of carbon dioxide, methane and nitrous oxide due to forest drainage of mire sites of different trophy. In Nutrient uptake and cycling in forest ecosystems. Dordrecht: Springer.
Google Scholar
Marushchak, M. E., Friborg, T., Biasi, C., Herbst, M., Johansson, T., Kiepe, I., Liimatainen, M., Lind, S. E., Martikainen, P. J., Virtanen, T., Soegaard, H., & Shurpali, N. J. (2016). Methane dynamics in the subarctic tundra: combining stable isotope analyses, plot- and ecosystem-scale measurements. Biogeosciences, 13, 597–608.
CAS
Google Scholar
MDI-BGC. (2013). Online eddy covariance gap-filling and flux-partitioning tool. In Eddy covariance gap-filling & flux-partitioning tool. http://www.bgc-jena.mpg.de/~MDIwork/eddyproc/. Accessed 20 Sep 2014.
Moore, P. D. (2002). The future of cool temperate bogs. Environmental Conservation, 29(1), 3–20.
CAS
Google Scholar
Moore, T. R., & Roulet, N. T. (1993). Methane flux: water table relations in northern wetlands. Geophysical Research Letters, 20(7), 587–590.
CAS
Google Scholar
Moore, T. R., De Young, A., Bubier, J. L., et al. (2011). A multi-year record of methane flux at the Mer Bleue Bog, Southern Canada. Ecosystems, 14, 646–657.
CAS
Google Scholar
Nicolini, G., Castaldi, S., Fratini, G., & Valentini, R. (2013). A literature overview of micrometeorological CH4 and N2O flux measurements in terrestrial ecosystems. Atmospheric Environment, 81, 311–319.
CAS
Google Scholar
Novak, M., Gebauer, G., Thoma, M., Curik, J., Stepanova, M., Jackova, I., Buzek, F., Barta, J., Santruckova, H., Fottova, D., & Kubena, A. A. (2015). Denitrification at two nitrogen-polluted, ombrotrophic Sphagnum bogs in Central Europe: insights from porewater N2O-isotope profiles. Soil Biology and Biochemistry, 81, 48–57.
CAS
Google Scholar
Olson, D. M., Griffis, T. J., Noormets, A., Kolka, R., & Chen, J. (2013). Interannual, seasonal, and retrospective analysis of the methane and carbon dioxide budgets of a temperate peatland. Journal of Geophysical Research – Biogeosciences, 118, 226–238.
CAS
Google Scholar
Otieno, D., Lindner, S., Muhr, J., & Borken, W. (2012). Sensitivity of peatland herbaceous vegetation to vapor pressure deficit influences net ecosystem CO2 exchange. Wetlands, 32(5), 895–905.
Google Scholar
Owen, K. E., Tenhunen, J., Reichstein, M., et al. (2007). Linking flux network measurements to continental scale simulations: ecosystem carbon dioxide exchange capacity under non-water-stressed conditions. Global Change Biology, 13, 734–760.
Google Scholar
Poyda, A., Reinsch, T., Skinner, R. H., et al. (2017). Comparing chamber and eddy covariance based net ecosystem CO2 exchange of fen soils. Journal of Plant Nutrition and Soil Science, 180, 151–266.
Google Scholar
Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C., Buchmann, N., Gilmanov, T., Granier, A., Grunwald, T., Havrankova, K., Ilvesniemi, H., Janous, D., Knohl, A., Laurila, T., Lohila, A., Loustau, D., Matteucci, G., Meyers, T., Miglietta, F., Ourcival, J. M., Pumpanen, J., Rambal, S., Rotenberg, E., Sanz, M., Tenhunen, J., Seufert, G., Vaccari, F., Vesala, T., Yakir, D., & Valentini, R. (2005). On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology, 11, 1424–1439.
Google Scholar
Rinne, J., Riutta, T., Pihlatie, M., Aurela, M., Haapanala, S., Tuovinen, J. P., Tuittila, E. S., & Vesala, T. (2007). Annual cycle of methane emission from a boreal fen measured by the eddy covariance technique. Tellus Series B: Chemical and Physical Meteorology, 59, 449–457.
Google Scholar
Risk, N., Snider, D., & Wagner-Riddle, C. (2013). Mechanisms leading to enhanced soil N2O fluxes induced by freeze-thaw cycles. Canadian Journal of Soil Science, 93, 401–414.
CAS
Google Scholar
Sachs, T., Wille, C., Boike, J., & Kutzbach, L. (2008). Environmental controls on ecosystem-scale CH4 emission from polygonal tundra in the Lena River Delta, Siberia. Journal of Geophysical Research. doi, 113. https://doi.org/10.1029/2007JG000505.
Sheppard, L. J., Leith, I. D., Leeson, S. R., van Dijk, N., Field, C., & Levy, P. (2013). Fate of N in a peatland, Whim bog: immobilisation in the vegetation and peat, leakage into pore water and losses as N2O depend on the form of N. Biogeosciences, 10, 149–160.
Google Scholar
Strack, M., Waller, M. F., & Waddington, J. M. (2006). Sedge succession and peatland methane dynamics: a potential feedback to climate change. Ecosystems, 9, 278–287.
CAS
Google Scholar
Teklemariam, T. A., Lafleur, P. M., Moore, T. R., Roulet, N. T., & Humphreys, E. R. (2010). The direct and indirect effects of interannual meteorological variability on ecosystem carbon dioxide exchange at a temperate ombrotrophic bog. Agricultural and Forest Meteorology, 150, 1402–1411.
Google Scholar
The Weather Network. (2015). The Weather Network. http://www.theweathernetwork.com. Accessed 15 Sep 2015.
Tiemeyer, B., Albiac Borraz, E., Augustin, J., Bechtold, M., Beetz, S., Beyer, C., Drösler, M., Ebli, M., Eickenscheidt, T., Fiedler, S., Förster, C., Freibauer, A., Giebels, M., Glatzel, S., Heinichen, J., Hoffmann, M., Höper, H., Jurasinski, G., Leiber-Sauheitl, K., Peichl-Brak, M., Roßkopf, N., Sommer, M., & Zeitz, J. (2016). High emissions of greenhouse gases from grasslands on peat and other organic soils. Global Change Biology, 22, 4134–4149.
Google Scholar
Tokida, T., Miyazaki, T., & Mizoguchi, M. (2005). Ebullition of methane from peat with falling atmospheric pressure. Geophysical Research Letters, 32. https://doi.org/10.1029/2005gl022949.
Turetsky, M. R., Kotowska, A., Bubier, J., Dise, N. B., Crill, P., Hornibrook, E. R. C., Minkkinen, K., Moore, T. R., Myers-Smith, I. H., Nykänen, H., Olefeldt, D., Rinne, J., Saarnio, S., Shurpali, N., Tuittila, E. S., Waddington, J. M., White, J. R., Wickland, K. P., & Wilmking, M. (2014). A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands. Global Change Biology, 20, 2183–2197.
Google Scholar
Vanselow-Algan, M., Schmidt, S. R., Greven, M., Fiencke, C., Kutzbach, L., & Pfeiffer, E. M. (2015). High methane emissions dominated annual greenhouse gas balances 30 years after bog rewetting. Biogeosciences, 12, 4361–4371.
Google Scholar
Wagner-Riddle, C., Congreves, K. A., & Abalos, D. (2017). Globally important nitrous oxide emissions from croplands induced by freeze-thaw cycles. Nature Geoscience, 10, 279–283.
CAS
Google Scholar
Wiedermann, M. M., Nordin, A., Gunnarsson, U., Nilsson, M. B., & Ericson, L. (2007). Global change shifts vegetation and plantparasite interactions in a boreal mire. Ecology, 88, 454–464.
Google Scholar
Windham-Myers, L., Bergamaschi, B., Anderson, F., Knox, S., Miller, R., & Fujii, R. (2018). Potential for negative emissions of greenhouse gases (CO2, CH4 and N2O) through coastal peatland re-establishment: novel insights from high frequency flux data at meter and kilometer scales. Environmental Research Letters, 13, 045005.
Google Scholar
Wohlfahrt, G., Anfang, C., Bahn, M., Haslwanter, A., Newesely, C., Schmitt, M., Drösler, M., Pfadenhauer, J., & Cernusca, A. (2005). Quantifying nighttime ecosystem respiration of a meadow using eddy covariance, chambers and modelling. Agricultural and Forest Meteorology, 128, 141–162.
Google Scholar
Yu, Z. C. (2012). Northern peatland carbon stocks and dynamics: a review. Biogeosciences, 9, 4071–4085.
CAS
Google Scholar
Yu, Z., Slater, L. D., Schäfer, K. V. R., Reeve, A. S., & Varner, R. K. (2014). Dynamics of methane ebullition from a peat monolith revealed from a dynamic flux chamber system: peat CH4 ebullition revealed by DFC. Journal of Geophysical Research – Biogeosciences, 119, 1789–1806.
CAS
Google Scholar