Skip to main content

Advertisement

Log in

A 1-year greenhouse gas budget of a peatland exposed to long-term nutrient infiltration and altered hydrology: high carbon uptake and methane emission

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Long-term increased nutrient influx into normally nutrient-limited peatlands in combination with altered hydrological conditions may threaten a peatland’s carbon storage function and affect its greenhouse gas (GHG) budget. However, in situ studies on the effects of long-term altered conditions on peatland functioning and GHG budgets are scarce. We thus quantified GHG fluxes in a peatland exposed to enhanced water level fluctuations and long-term nutrient infiltration in Ontario, Canada, via eddy-covariance and flux chamber measurements. The peatland was a prominent sink of − 680 ± 202 g carbon dioxide (CO2) and a source of 22 ± 8 g methane (CH4) m−2 year−1, resulting in a negative radiative forcing of − 80 g CO2 eq. m−2 y−1. During the growing season CH4 fluxes were constantly high (0.1 g m−2 s−1). Further, on three dates, we measured nitrous oxide (N2O) fluxes and observed a small flux of 2.2 mg m−2 day−1 occurring during the thawing period. Taking the studied ecosystem as a model system for other peatlands exposed to long-term increased nutrient infiltration and enhanced water level fluctuations, our data suggest that such peatlands can maintain their carbon storage function and CO2 sequestration may outweigh emissions of CH4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Aerts, R., & Ludwig, F. (1997). Water-table changes and nutritional status affect trace gas emissions from laboratory columns of peatland soils. Soil Biology and Biogeochemistry, 29, 1691–1698.

    CAS  Google Scholar 

  • Alm, J., Talanov, A., Saarnio, S., Silvola, J., Ikkonen, E., Aaltonen, H., Nykänen, H., & Martikainen, P. J. (1997). Reconstruction of the carbon balance for microsites in a boreal oligotrophic fen, Finland. Oecologia, 110, 423–431.

    CAS  Google Scholar 

  • Beer, J., & Blodau, C. (2007). Transport and thermodynamics constrain belowground carbon turnover in a northern peatland. Geochimica et Cosmochimica Acta, 71, 2989–3002.

    CAS  Google Scholar 

  • Berger, S., Jang, I., Seo, J., Kang, H., & Gebauer, G. (2013). A record of N2O and CH4 emissions and underlying soil processes of Korean rice paddies as affected by different water management practices. Biogeochemistry, 115, 317–322.

    CAS  Google Scholar 

  • Berger, S., Gebauer, G., Blodau, C., & Knorr, K.-H. (2017). Peatlands in a eutrophic world – assessing the state of a poor fen-bog transition in southern Ontario, Canada, after long term nutrient input and altered hydrological conditions. Soil Biology and Biochemistry, 114, 131–144.

    CAS  Google Scholar 

  • Berger, S., Praetzel, L. S. E., Goebel, M., Blodau, C., & Knorr, K. H. (2018). Differential response of carbon cycling to long-term nutrient input and altered hydrological conditions in a continental Canadian peatland. Biogeosciences, 15, 885–903.

    CAS  Google Scholar 

  • Blodau, C. (2002). Carbon cycling in peatlands - a review of processes and controls. Environmental Reviews, 10(2), 111–134.

    CAS  Google Scholar 

  • Bragazza, L., Buttler, A., Habermacher, J., Brancaleoni, L., Gerdol, R., Fritze, H., Hanajík, P., Laiho, R., & Johnson, D. (2012). High nitrogen deposition alters the decomposition of bog plant litter and reduces carbon accumulation. Global Change Biology, 18, 11631172.

    Google Scholar 

  • Brix, H., Sorrell, B. K., & Orr, P. T. (1992). Internal pressurization and convective gas-flow in some emergent fresh-water macrophytes. Limnology and Oceanography, 37, 1420–1433.

    Google Scholar 

  • Brown, M. G., Humphreys, E. R., Moore, T. R., Roulet, N. T., & Lafleur, P. M. (2014). Evidence for a nonmonotonic relationship between ecosystem-scale peatland methane emissions and water table depth. Journal of Geophysical Research – Biogeosciences, 119, 826–835.

    CAS  Google Scholar 

  • Bubier, J. L., Moore, T. R., & Bellisario, L. (1995). Ecological controls on methane emissions from a Northern peatland complex in the zone of discontinuous permafrost, Manitoba, Canada. Global Biogeochemical Cycles, 9, 455–470.

    CAS  Google Scholar 

  • Bubier, J. L., Moore, T. R., & Bledzki, L. A. (2007). Effects of nutrient addition on vegetation and carbon cycling in an ombrotrophic bog. Global Change Biology, 13, 1168–1186.

    Google Scholar 

  • Burba, G. (2013). Eddy covariance method for scientific, industrial, agricultural, and regulatory applications. In A field book on measuring ecosystem gas exchange and areal emission rates. Lincoln: LI-COR Biosciences ISBN 978-0-615-76827-4.

    Google Scholar 

  • Burba, G., Schmidt, A., Scott, R. L., Nakai, T., Kathilankal, J., Fratini, G., Hanson, C., Law, B., McDermitt, D. K., Eckles, R., Furtaw, M., & Velgersdyk, M. (2012). Calculating CO2 and H2O eddy covariance fluxes from an enclosed gas analyzer using an instantaneous mixing ratio. Global Change Biology, 18, 385399.

    Google Scholar 

  • Burger, M., Berger, S., Spangenberg, I., & Blodau, C. (2016). Summer fluxes of methane and carbon dioxide from a pond and floating mat in a continental Canadian peatland. Biogeosciences, 13, 3777–3791.

    CAS  Google Scholar 

  • Dancey, C., & Reidy, J. (2004). Statistics without maths for psychology: using SPSS for Windows. London: Pearson Education Limited.

    Google Scholar 

  • Dise, N. B., Gorham, E., & Verry, E. S. (1993). Environmental factors controlling methane emissions from peatlands in Northern Minnesota. Journal of Geophysical Research-Atmospheres, 98(D6), 10583–10594.

    Google Scholar 

  • Eriksson, T., Öquist, M. G., & Nilsson, M. B. (2010). Production and oxidation of methane in a boreal mire after a decade of increased temperature and nitrogen and sulfur deposition. Global Change Biology, 16, 2130–2144.

    Google Scholar 

  • Foken, T., Göckede, M., Mauder, M., et al. (2004). Post-field data quality control. In X. Lee, W. Massman, & B. Law (Eds.), Handbook of micrometeorology: a guide for surface flux measurement and analysis (pp. 181–208). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Forbrich, I., Kutzbach, L., Wille, C., Becker, T., Wu, J., & Wilmking, M. (2011). Cross-evaluation of measurements of peatland methane emissions on microform and ecosystem scales using high-resolution landcover classification and source weight modelling. Agricultural and Forest Meteorology, 151, 864–874.

    Google Scholar 

  • Frolking, S., Roulet, N. T., Moore, T. R., et al. (2002). Modeling seasonal to annual carbon balance of Mer Bleue Bog, Ontario, Canada. Global Biogeochemical Cycles, 16, 4-1–4-21.

    Google Scholar 

  • Goldberg, S. D., Knorr, K.-H., Blodau, C., et al. (2010). Impact of altering the water table height of an acidic fen on N2O and NO fluxes and soil concentrations. Global Change Biology, 16(1), 220–233.

    Google Scholar 

  • GRCA. (2015). Luther marsh wildlife management area. http://www.grandriver.ca. Accessed 15 Sep 2015.

  • Hartley, I. P., Hill, T. C., Wade, T. J., Clement, R. J., Moncrieff, J. B., Prieto-Blanco, A., Disney, M. I., Huntley, B., Williams, M., Howden, N. J. K., Wookey, P. A., & Baxter, R. (2015). Quantifying landscape-level methane fluxes in subarctic Finland using a multiscale approach. Global Change Biology, 21, 3712–3725.

    Google Scholar 

  • Helfter, C., Campbell, C., Dinsmore, K. J., Drewer, J., Coyle, M., Anderson, M., Skiba, U., Nemitz, E., Billett, M. F., & Sutton, M. A. (2015). Drivers of long-term variability in CO2 net ecosystem exchange in a temperate peatland. Biogeosciences, 12, 1799–1811.

    CAS  Google Scholar 

  • Hendriks, D. M. D., van Huissteden, J., & Dolman, A. J. (2010). Multi-technique assessment of spatial and temporal variability of methane fluxes in a peat meadow. Agricultural and Forest Meteorology, 150, 757–774.

    Google Scholar 

  • Henneberg, A., Sorrell, B. K., & Brix, H. (2012). Internal methane transport through Juncus effusus: experimental manipulation of morphological barriers to test above- and below-ground diffusion limitation. New Phytologist, 196, 799–806.

    CAS  Google Scholar 

  • IPCC. (2007). Climate change 2007: the physical science basis: contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

    Google Scholar 

  • IPCC. (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp, https://doi.org/10.1017/CBO9781107415324.

  • Joabsson, A., Christensen, T. R., & Wallen, B. (1999). Vascular plant controls on methane emissions from northern peatforming wetlands. Trends in Ecology & Evolution, 14, 385–388.

    CAS  Google Scholar 

  • Kellner, E., Baird, A. J., Oosterwoud, M., Harrison, K., & Waddington, J. M. (2006). Effect of temperature and atmospheric pressure on methane (CH4) ebullition from near-surface peats. Geophysical Research Letters, 33. https://doi.org/10.1029/2006gl027509.

  • Kljun, N., Kastner-Klein, P., Fedorovich, E., & Rotach, M. W. (2004). Evaluation of Lagrangian footprint model using data from wind tunnel convective boundary layer. Agricultural and Forest Meteorology, 127, 189–201.

    Google Scholar 

  • Koebsch, F., Jurasinski, G., Koch, M., et al. (2015). Controls for multi-scale temporal variation in ecosystem methane exchange during the growing season of a permanently inundated fen. Agricultural and Forest Meteorology, 204, 95–105.

    Google Scholar 

  • Kormann, R., & Meixner, F. X. (2001). An analytical footprint model for non-neutral stratification. Boundary-Layer Meteorology, 99, 207–224.

    Google Scholar 

  • Krumholz, L. R., Hollenback, J. L., Roskes, S. J., & Ringelberg, D. B. (1995). Methanogenesis and methanotrophy within a Sphagnum peatland. FEMS Microbiology Ecology, 18, 215–224.

    CAS  Google Scholar 

  • Laanbroek, H. J. (2010). Methane emission from natural wetlands: interplay between emergent macrophytes and soil microbial processes. A mini-review. Annals of Botany, 105, 141–153.

    CAS  Google Scholar 

  • Lafleur, P. M., Roulet, N. T., Bubier, J. L., et al. (2003). Interannual variability in the peatland-atmosphere carbon dioxide exchange at an ombrotrophic bog. Global Biogeochemical Cycles, 17. https://doi.org/10.1029/2002GB001983.

  • Lai, D. Y. F. (2009). Methane dynamics in northern peatlands: a review. Pedosphere, 19, 409–421.

    CAS  Google Scholar 

  • Lai, D. Y. F., Moore, T. R., & Roulet, N. T. (2014). Spatial and temporal variations of methane flux measured by autochambers in a temperate ombrotrophic peatland. Journal of Geophysical Research – Biogeosciences, 119, 864–880.

    CAS  Google Scholar 

  • Laine, J., Silvola, J., Tolonen, K., et al. (1996). Effect of water-level drawdown on global climatic warming: northern peatlands. Ambio, 25, 179–184.

    Google Scholar 

  • Larmola, T., Bubier, J. L., Kobyljanec, C., Basiliko, N., Juutinen, S., Humphreys, E., Preston, M., & Moore, T. R. (2013). Vegetation feedbacks of nutrient addition lead to a weaker carbon sink in an ombrotrophic bog. Global Change Biology, 19, 3729–3739.

    Google Scholar 

  • Leppälä, M., Oksanen, J., & Tuittila, E. S. (2011). Methane flux dynamics during mire succession. Oecologia, 165, 489–499.

    Google Scholar 

  • Leppelt, T., Dechow, R., Gebbert, S., Freibauer, A., Lohila, A., Augustin, J., Drösler, M., Fiedler, S., Glatzel, S., Höper, H., Järveoja, J., Lærke, P. E., Maljanen, M., Mander, Ü., Mäkiranta, P., Minkkinen, K., Ojanen, P., Regina, K., & Strömgren, M. (2014). Nitrous oxide emission budgets and land-use-driven hotspots for organic soils in Europe. Biogeosciences, 11, 6595–6612.

    Google Scholar 

  • Levy, P. E., Burden, A., Cooper, M. D. A., Dinsmore, K. J., Drewer, J., Evans, C., Fowler, D., Gaiawyn, J., Gray, A., Jones, S. K., Jones, T., McNamara, N. P., Mills, R., Ostle, N., Sheppard, L. J., Skiba, U., Sowerby, A., Ward, S. E., & Zieliński, P. (2012). Methane emissions from soils: synthesis and analysis of a large UK data set. Global Change Biology, 18, 1657–1669.

    Google Scholar 

  • Long, K. D., Flanagan, L. B., & Cai, T. (2010). Diurnal and seasonal variation in methane emissions in a northern Canadian peatland measured by eddy covariance. Global Change Biology, 16, 2420–2435.

    Google Scholar 

  • Martikainen, P. J., Nykänen, H., Alm, J., & Silvola, J. (1995). Change in fluxes of carbon dioxide, methane and nitrous oxide due to forest drainage of mire sites of different trophy. In Nutrient uptake and cycling in forest ecosystems. Dordrecht: Springer.

    Google Scholar 

  • Marushchak, M. E., Friborg, T., Biasi, C., Herbst, M., Johansson, T., Kiepe, I., Liimatainen, M., Lind, S. E., Martikainen, P. J., Virtanen, T., Soegaard, H., & Shurpali, N. J. (2016). Methane dynamics in the subarctic tundra: combining stable isotope analyses, plot- and ecosystem-scale measurements. Biogeosciences, 13, 597–608.

    CAS  Google Scholar 

  • MDI-BGC. (2013). Online eddy covariance gap-filling and flux-partitioning tool. In Eddy covariance gap-filling & flux-partitioning tool. http://www.bgc-jena.mpg.de/~MDIwork/eddyproc/. Accessed 20 Sep 2014.

  • Moore, P. D. (2002). The future of cool temperate bogs. Environmental Conservation, 29(1), 3–20.

    CAS  Google Scholar 

  • Moore, T. R., & Roulet, N. T. (1993). Methane flux: water table relations in northern wetlands. Geophysical Research Letters, 20(7), 587–590.

    CAS  Google Scholar 

  • Moore, T. R., De Young, A., Bubier, J. L., et al. (2011). A multi-year record of methane flux at the Mer Bleue Bog, Southern Canada. Ecosystems, 14, 646–657.

    CAS  Google Scholar 

  • Nicolini, G., Castaldi, S., Fratini, G., & Valentini, R. (2013). A literature overview of micrometeorological CH4 and N2O flux measurements in terrestrial ecosystems. Atmospheric Environment, 81, 311–319.

    CAS  Google Scholar 

  • Novak, M., Gebauer, G., Thoma, M., Curik, J., Stepanova, M., Jackova, I., Buzek, F., Barta, J., Santruckova, H., Fottova, D., & Kubena, A. A. (2015). Denitrification at two nitrogen-polluted, ombrotrophic Sphagnum bogs in Central Europe: insights from porewater N2O-isotope profiles. Soil Biology and Biochemistry, 81, 48–57.

    CAS  Google Scholar 

  • Olson, D. M., Griffis, T. J., Noormets, A., Kolka, R., & Chen, J. (2013). Interannual, seasonal, and retrospective analysis of the methane and carbon dioxide budgets of a temperate peatland. Journal of Geophysical Research – Biogeosciences, 118, 226–238.

    CAS  Google Scholar 

  • Otieno, D., Lindner, S., Muhr, J., & Borken, W. (2012). Sensitivity of peatland herbaceous vegetation to vapor pressure deficit influences net ecosystem CO2 exchange. Wetlands, 32(5), 895–905.

    Google Scholar 

  • Owen, K. E., Tenhunen, J., Reichstein, M., et al. (2007). Linking flux network measurements to continental scale simulations: ecosystem carbon dioxide exchange capacity under non-water-stressed conditions. Global Change Biology, 13, 734–760.

    Google Scholar 

  • Poyda, A., Reinsch, T., Skinner, R. H., et al. (2017). Comparing chamber and eddy covariance based net ecosystem CO2 exchange of fen soils. Journal of Plant Nutrition and Soil Science, 180, 151–266.

    Google Scholar 

  • Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C., Buchmann, N., Gilmanov, T., Granier, A., Grunwald, T., Havrankova, K., Ilvesniemi, H., Janous, D., Knohl, A., Laurila, T., Lohila, A., Loustau, D., Matteucci, G., Meyers, T., Miglietta, F., Ourcival, J. M., Pumpanen, J., Rambal, S., Rotenberg, E., Sanz, M., Tenhunen, J., Seufert, G., Vaccari, F., Vesala, T., Yakir, D., & Valentini, R. (2005). On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology, 11, 1424–1439.

    Google Scholar 

  • Rinne, J., Riutta, T., Pihlatie, M., Aurela, M., Haapanala, S., Tuovinen, J. P., Tuittila, E. S., & Vesala, T. (2007). Annual cycle of methane emission from a boreal fen measured by the eddy covariance technique. Tellus Series B: Chemical and Physical Meteorology, 59, 449–457.

    Google Scholar 

  • Risk, N., Snider, D., & Wagner-Riddle, C. (2013). Mechanisms leading to enhanced soil N2O fluxes induced by freeze-thaw cycles. Canadian Journal of Soil Science, 93, 401–414.

    CAS  Google Scholar 

  • Sachs, T., Wille, C., Boike, J., & Kutzbach, L. (2008). Environmental controls on ecosystem-scale CH4 emission from polygonal tundra in the Lena River Delta, Siberia. Journal of Geophysical Research. doi, 113. https://doi.org/10.1029/2007JG000505.

  • Sheppard, L. J., Leith, I. D., Leeson, S. R., van Dijk, N., Field, C., & Levy, P. (2013). Fate of N in a peatland, Whim bog: immobilisation in the vegetation and peat, leakage into pore water and losses as N2O depend on the form of N. Biogeosciences, 10, 149–160.

    Google Scholar 

  • Strack, M., Waller, M. F., & Waddington, J. M. (2006). Sedge succession and peatland methane dynamics: a potential feedback to climate change. Ecosystems, 9, 278–287.

    CAS  Google Scholar 

  • Teklemariam, T. A., Lafleur, P. M., Moore, T. R., Roulet, N. T., & Humphreys, E. R. (2010). The direct and indirect effects of interannual meteorological variability on ecosystem carbon dioxide exchange at a temperate ombrotrophic bog. Agricultural and Forest Meteorology, 150, 1402–1411.

    Google Scholar 

  • The Weather Network. (2015). The Weather Network. http://www.theweathernetwork.com. Accessed 15 Sep 2015.

  • Tiemeyer, B., Albiac Borraz, E., Augustin, J., Bechtold, M., Beetz, S., Beyer, C., Drösler, M., Ebli, M., Eickenscheidt, T., Fiedler, S., Förster, C., Freibauer, A., Giebels, M., Glatzel, S., Heinichen, J., Hoffmann, M., Höper, H., Jurasinski, G., Leiber-Sauheitl, K., Peichl-Brak, M., Roßkopf, N., Sommer, M., & Zeitz, J. (2016). High emissions of greenhouse gases from grasslands on peat and other organic soils. Global Change Biology, 22, 4134–4149.

    Google Scholar 

  • Tokida, T., Miyazaki, T., & Mizoguchi, M. (2005). Ebullition of methane from peat with falling atmospheric pressure. Geophysical Research Letters, 32. https://doi.org/10.1029/2005gl022949.

  • Turetsky, M. R., Kotowska, A., Bubier, J., Dise, N. B., Crill, P., Hornibrook, E. R. C., Minkkinen, K., Moore, T. R., Myers-Smith, I. H., Nykänen, H., Olefeldt, D., Rinne, J., Saarnio, S., Shurpali, N., Tuittila, E. S., Waddington, J. M., White, J. R., Wickland, K. P., & Wilmking, M. (2014). A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands. Global Change Biology, 20, 2183–2197.

    Google Scholar 

  • Vanselow-Algan, M., Schmidt, S. R., Greven, M., Fiencke, C., Kutzbach, L., & Pfeiffer, E. M. (2015). High methane emissions dominated annual greenhouse gas balances 30 years after bog rewetting. Biogeosciences, 12, 4361–4371.

    Google Scholar 

  • Wagner-Riddle, C., Congreves, K. A., & Abalos, D. (2017). Globally important nitrous oxide emissions from croplands induced by freeze-thaw cycles. Nature Geoscience, 10, 279–283.

    CAS  Google Scholar 

  • Wiedermann, M. M., Nordin, A., Gunnarsson, U., Nilsson, M. B., & Ericson, L. (2007). Global change shifts vegetation and plantparasite interactions in a boreal mire. Ecology, 88, 454–464.

    Google Scholar 

  • Windham-Myers, L., Bergamaschi, B., Anderson, F., Knox, S., Miller, R., & Fujii, R. (2018). Potential for negative emissions of greenhouse gases (CO2, CH4 and N2O) through coastal peatland re-establishment: novel insights from high frequency flux data at meter and kilometer scales. Environmental Research Letters, 13, 045005.

    Google Scholar 

  • Wohlfahrt, G., Anfang, C., Bahn, M., Haslwanter, A., Newesely, C., Schmitt, M., Drösler, M., Pfadenhauer, J., & Cernusca, A. (2005). Quantifying nighttime ecosystem respiration of a meadow using eddy covariance, chambers and modelling. Agricultural and Forest Meteorology, 128, 141–162.

    Google Scholar 

  • Yu, Z. C. (2012). Northern peatland carbon stocks and dynamics: a review. Biogeosciences, 9, 4071–4085.

    CAS  Google Scholar 

  • Yu, Z., Slater, L. D., Schäfer, K. V. R., Reeve, A. S., & Varner, R. K. (2014). Dynamics of methane ebullition from a peat monolith revealed from a dynamic flux chamber system: peat CH4 ebullition revealed by DFC. Journal of Geophysical Research – Biogeosciences, 119, 1789–1806.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was conducted as part of the project entitled “Impact of long-term wetting on carbon cycling and climate change feedback in a northern temperate bog” granted by the Deutsche Forschungsgemeinschaft (DFG) (BL563/21-1) to C. Blodau and the project SASCHA (“Sustainable land management and adaptation strategies to climate change for the Western Siberian grain belt”) granted by the German Federal Ministry of Education and Research within their Sustainable Land Management funding framework (reference 01LL0906D) to O. Klemm. We are grateful for the funding. Furthermore, we thank M. Neumann from the Grand River Conservation Authority for the permission to carry out this research in the Luther Marsh Wildlife Management Area. We also thank J. Forsyth, P. Smith, and L. Wing for helping us with organizational and technical support. We gratefully acknowledge the provision of the eddy-covariance gap-filling tool by the Max Planck Institute for Biogeochemistry. We very much acknowledge the provision of the equipment for N2O-flux measurements by G. Gebauer (BayCEER, University of Bayreuth, Germany). We thank I. Spangenberg, L. Pretzel, I.B. Biro, M. Rammo, F. Benninghoff, and N. Vickus who were of great assistance to us during closed-chamber measurement campaign days in the field.

Author information

Authors and Affiliations

Author notes

  1. Christian Blodau is deceased. This paper is dedicated to his memory.

    • Christian Blodau
  2. Sina Berger and Elisa Braeckevelt should be considered first authors as they equally shared writing most of this article

    Authors

    Corresponding author

    Correspondence to Sina Berger.

    Additional information

    Publisher’s note

    Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

    Sina Berger and Elisa Braeckevelt should be considered first authors as they equally shared writing most of this article

    Rights and permissions

    Reprints and permissions

    About this article

    Check for updates. Verify currency and authenticity via CrossMark

    Cite this article

    Berger, S., Braeckevelt, E., Blodau, C. et al. A 1-year greenhouse gas budget of a peatland exposed to long-term nutrient infiltration and altered hydrology: high carbon uptake and methane emission. Environ Monit Assess 191, 533 (2019). https://doi.org/10.1007/s10661-019-7639-1

    Download citation

    • Received:

    • Accepted:

    • Published:

    • DOI: https://doi.org/10.1007/s10661-019-7639-1

    Keywords

    Navigation