Abstract
Mass mortality of fishes was reported at the Adyar estuary, South India, during November 2017. The probable reasons for fish mortality are analyzed in this paper. Critical assessments on water quality parameters including the metal concentrations, nutrients, and histology of gills and liver of fish (Mugil cephalus) isolated from the impact zone were performed. Among the metals observed, chromium showed levels (3.64 ± 0.001 mg L−1) much above the average permissible limits (0.1 mg L−1). The measured values of physico-chemical parameters in the impact zone are as follows: dissolved oxygen 4.7 ± 0.22 mg L−1, total alkalinity 132 ± 4 CaCO3 mg L−1, salinity 5.3 ± 0.3 PSU, temperature 27.8 ± 0.16 °C, nitrate, 1.66 ± 0.48 mg L−1, nitrite 0.01 ± 0.0008 mg L−1, ammonia 0.03 ± 0.001 mg L−1, phosphate 1.52 ± 0.002 mg L−1, and silicate 13.85 ± 3.1 mg L−1. The low salinity could have escalated the toxicity of the metal. In addition, histology of gills and liver showed cellular necrosis, epithelial lifting, hyperplasia, edema, mucous cell proliferation in the gills, cytoplasmic vacuolation of hepatocytes, and degeneration of liver which reveal that chromium toxicity is the most probable cause for mass mortality.
This is a preview of subscription content, access via your institution.



References
Abdel-Moniem, M., Khaled, A., & Iskander, M. (1994). A study on levels of some heavy metals in El-Mex wes Alexandria, Egypt (pp. 155–174). Alexandria: Proceeding of the Fourth Conference on Environmental Protection Must.
Abu-Elala, N. M., Abd-Elsalam, R. M., Marouf, S., Abdelaziz, M., & Moustafa, M. (2016). Eutrophication, ammonia intoxication, and infectious diseases: interdisciplinary factors of mass mortalities in cultured Nile tilapia. Journal of Aquatic Animal Health, 28(3), 187–198. https://doi.org/10.1080/08997659.2016.1185050.
Allen, P. (1994). Mercury accumulation profiles and their modification by interaction with cadmium and lead in the soft tissues of the cichlid Oreochromis aureus during chronic exposure. Bulletin of Environmental Contamination and Toxicology, 53(5), 684–692. https://doi.org/10.1007/BF00196940.
Allen, P. (1995). Long-term mercury accumulation in the presence of cadmium and lead in Oreochromis aureus (Steindachner). Journal of Environmental Science and Health, 30(4), 549–567. https://doi.org/10.1016/S1001-6279(09)60005-6.
APHA. (2012). American Water Works Association (AWWA), Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater. USA: American Public Health Association.
Arellano, J. M., Storch, V., & Sarasquete, C. (1999). Histological changes and copper accumulation in liver and gills of the Senegales sole, Solea senegalensis. Ecotoxicology and Environmental Safety, 44(1), 62–72. https://doi.org/10.1006/eesa.1999.1801.
Atchison, G. J., Henry, M. G., & Sandheinrich, M. B. (1987). Effects of metals on fish behavior: a review. Environmental Biology of Fishes, 18(1), 11–25. https://doi.org/10.1007/BF00002324.
Bakshi, A., & Panigrahi, A. K. (2018). A comprehensive review on chromium induced alterations in fresh water fishes. Toxicology Reports, 5, 440–447. https://doi.org/10.1016/j.toxrep.2018.03.007.
Begum, G., Venkateswara Rao, J., & Srikanth, K. (2006). Oxidative stress and changes in locomotor behavior and gill morphology of Gambusia affinis exposed to chromium. Toxicological & Environmental Chemistry, 88(2), 355–365. https://doi.org/10.1080/02772240600635985.
Benaduce, A., Kochhann, D., Flores, É. M., Dressler, V., & Baldisserotto, B. (2008). Toxicity of cadmium for silver catfish Rhamdia quelen (Heptapteridae) embryos and larvae at different alkalinities. Archives of Environmental Contamination and Toxicology, 54(2), 274–282. https://doi.org/10.1007/s00244-007-9024-2.
Benson, N. U., Asuquo, F. E., Williams, A. B., Essien, J. P., Ekong, C. I., Akpabio, O., & Olajire, A. A. (2016). Source evaluation and trace metal contamination in benthic sediments from equatorial ecosystems using 656 multivariate statistical techniques. PLoS One, 11(6), e0156485. https://doi.org/10.1371/journal.pone.0156485.
Bester, C. (2004). Ichthyology at the Florida Museum of Natural History. Accessed on November 10th 2018 at https://www.floridamuseum.ufl.edu/discover-fish/species-profiles/mugil-cephalus
Blaber, S. J. (1976). The food and feeding ecology of Mugilidae in the St. Lucia lake system. Biological Journal of the Linnean Society, 8(3), 267–277. https://doi.org/10.1111/j.1095-8312.1976.tb00249.x.
Cardona, L. (2000). Effects of salinity on the habitat selection and growth performance of Mediterranean flathead grey mullet Mugil cephalus (Osteichthyes, Mugilidae). Estuarine, Coastal and Shelf Science, 50(5), 727–737. https://doi.org/10.1006/ecss.1999.0594.
Chang, S., Zdanowicz, V. S., & Murchelano, R. A. (1998). Associations between liver lesions in winter flounder (Pleuronectes americanus) and sediment chemical contaminants from north-east United States estuaries. ICES Journal of Marine Science, 55(5), 954–969. https://doi.org/10.1006/jmsc.1998.0354.
Chen, M. H., & Chen, C. Y. (1999). Bioaccumulation of sediment-bound heavy metals in grey mullet, Liza macrolepis. Marine Pollution Bulletin, 39(1-12), 239–244. https://doi.org/10.1016/S0025-326X(99)00027-2.
Cuvin-Aralar, M. L. A., & Furness, R. W. (1990). Tissue distribution of mercury and selenium in minnows, Phoxinus phoxinus. Bulletin of Environmental Contamination and Toxicology, 45(5), 775–782. https://doi.org/10.1007/BF01701000.
Dallinger, R., Prosi, F., Segner, H., & Back, H. (1987). Contaminated food and uptake of heavy metals by fish: a review and a proposal for further research. Oecologia, 73(1), 91–98. https://doi.org/10.1007/BF00376982.
Datta, S. (2011). Inland Fisheries Resources of India. CIFE, Kolkata Centre, Article in Inland Water Biology.
Dhara, K. (2014). Hazardous impact of fly ash and some of its ingredients on fish, fish food organisms and aquatic ecosystem. Ph.D. Thesis Kalyani University, Kalyani, India. 170.
Eddy, F. B. (1999). Effects of ammonia on fish and responses of the ionic regulatory system. In A. K. Mittal, F. B. Eddy, & J. S. Datta Munshi (Eds.), Water/Air transitions in Biology (pp. 281–292). New Delhi: Oxford and IHB.
Eddy, F. B. (2005). Ammonia in estuaries and effects on fish. Journal of Fish Biology, 67(6), 1495–1513. https://doi.org/10.1111/j.1095-8649.2005.00930.x.
Eissa, A. E., Tharwat, N. A., & Zaki, M. M. (2013). Field assessment of the mid-winter mass kills of trophic fishes at Mariotteya stream, Egypt: chemical and biological pollution synergistic model. Chemosphere, 90(3), 1061–1068. https://doi.org/10.1016/j.chemosphere.2012.09.010.
Erickson, R. J., Benoit, D. A., Mattson, V. R., Nelson, H. P., & Leonard, E. N. (1996). The effects of water chemistry on the toxicity of copper to fathead minnows. Environmental Toxicology and Chemistry, 15(2), 181–193. https://doi.org/10.1002/etc.5620150217.
Evans, D. H. (1987). The fish gill: site of action and model for toxic effects of environmental pollutants. Environmental Health Perspectives, 71, 47–58. https://doi.org/10.1289/ehp.877147.
Fanta, E., Rios, F. S. A., Romão, S., Vianna, A. C. C., & Freiberger, S. (2003). Histopathology of the fish Corydoras paleatus contaminated with sublethal levels of organophosphorus in water and food. Ecotoxicology and Environmental Safety, 54(2), 119–130. https://doi.org/10.1016/S0147-6513(02)00044-1.
Fernandes, C., Fontainhas-Fernandes, A., Peixoto, F., & Salgado, M. A. (2007). Bioaccumulation of heavy metals in Liza saliens from the Esmoriz–Paramos coastal lagoon, Portugal. Ecotoxicology and Environmental Safety, 66(3), 426–431. https://doi.org/10.1016/j.ecoenv.2006.02.007.
Förstner, U., & Wittman, G. T. W. (1981). Metal pollution in the aquatic environment (272nd ed.p. 486). Berlin: Springer-Verlag.
Gautier, J-C (Ed.) (2011). Drug Safety Evaluation: Methods and protocols, Methods in Molecular Biology, Springer Science + Business Media, LLC, 691. https://doi.org/10.1007/978-1-60761-849-2_11
Goel, P.K. (2006). Water pollution: causes, effects and control. New Age International, 418.
Gowri, V. S., & Ramachandran, S. (2001). Coastal pollution of Chennai city, Coastal geomorphology of India. Ramachandran S (ed) Institute of Ocean Management. Anna University, Chennai, India, 13, 1187–1206.
Gowri, V. S., Ramachandran, S., Ramesh, R., Pramiladevi, I. R. R., & Krishnaveni, K. (2008). Application of GIS in the study of mass transport of pollutants by Adyar and Cooum Rivers in Chennai, Tamilnadu. Environmental Monitoring and Assessment, 138(1-3), 41–49. https://doi.org/10.1007/s10661-007-9789-9.
Heath, A. G. (1987). Water Pollution and Fish Physiology (p. 245). Boca Raton: CRC Press Inc..
Hogendoorn-roozemond, A.S., Tenholder, J.J.H.M., Stirk, J.J.T.W.A. (1977). The influence of pH on the toxicity of hexavalent chromium to rainbow trout (Salmo gairdneri). Aquatic pollutants-transformation and biological effects. Proceedings of the Second International Symposium on Aquatic Pollutants, Oxford: Pergamon Press, 477-478.
Irwin, R.J., Van Mouwerik, M., Stevens, L., Seese, M.D., & Basham. W. (1997). Chromium VI (Hexavalent chromium). In: Environmental contaminants encyclopedia (alkanes entry). National Parks Service. Water Resources Division. Fort Collins, Colorado.
Janakiraman, A., Naveed, M. S., Asrar Sheriff, M., Altaff, K. (2017). Ecological restoration assessment of Adyar creek and estuary using meiofaunal communities as ecological indicators for aquatic pollution. Regional Studies Marine Science, 9, 135–144. https://doi.org/10.1016/j.rsma.2016.12.001.
Javed, M., Ahmad, I., Usmani, N., & Ahmad, M. (2016). Studies on biomarkers of oxidative stress and associated genotoxicity and histopathology in Channa punctatus from heavy metal polluted canal. Chemosphere, 151, 210–219. https://doi.org/10.1016/j.chemosphere.2016.02.080.
JGFOS protocol 1994. Protocol for Joint Global Flux Study (JGFOS) core management. 178
Jones, M. B. (1975). Synergistic effects of salinity, temperature and heavy metals on mortality and osmoregulation in marine and estuarine isopods (Crustacea). Marine Biology, 30(1), 13–20. https://doi.org/10.1007/BF00393748.
Kangur, K., Kangur, A., Kangur, P., & Laugaste, R. (2005). Fish kill in Lake Peipsi in summer 2002 as a synergistic effect of a cyanobacterial bloom, high temperature, and low water level. Proceedings of the Estonian Academy of Sciences. Biology. Ecology, 54(1), 67–80.
Karakoc, M. (1999). Effects of salinity on the accumulation of copper in liver, gill and muscle tissues of Tilapia nilotica. Turkish Journal of Zoology, 23(3), 299–304.
Keith, P., & Allardi, J. (2001). Atlas des poissons d'eau douce de France. Collection patrimoines naturels.
Kennedy, C. J. (2011). The toxicology of metals in fishes. In A. P. Farrell (Ed.), Encyclopedia of Fish Physiology: From Genome to Environment (3rd ed., pp. 2061–2068). San Diego: Academic Press.
Klemm, D. J., G. J. Stober, G.J., & Lazorchak, J.M. (1993). Fish field and laboratory methods for evaluating the biological integrity of surface waters (EPA/600/R-92/111). US Environmental Protection Agency, Cincinnati, Ohio.
Linbo, T. L., Baldwin, D. H., McIntyre, J. K., & Scholz, N. L. (2009). Effects of water hardness, alkalinity, and dissolved organic carbon on the toxicity of copper to the lateral line of developing fish. Environmental Toxicology and Chemistry, 28(7), 1455–1461. https://doi.org/10.1897/08-283.1.
Madhavan, P., & Elumalai, K. (2016a). Effects of chromium (VI) on haematological parameters in catfish, Clarias batrachus (Linnaeus, 1758) (Actinopterygii: Siluriformes). International Journal of Advanced Research in Biological Sciences, 3(5), 62–70.
Madhavan, P., & Elumalai, K. (2016b). Effects of chromium (VI) on the lipid peroxidation and antioxidant parameters in the gill and kidney tissues of catfish, Clarias batrachus (Linnaeus, 1758) (Actinopterygii: Siluriformes). International Journal of Advanced Research in Biological Sciences, 3(4), 249–255.
Mallat, J. (1985). Fish gill structural changes induced by toxicants and other irritants: a statistical review. Canadian Journal of Fisheries and Aquatic Sciences, 42(4), 630–648. https://doi.org/10.1139/f85-083.
McLusky, D. S., & Hagerman, L. (1987). The toxicity of chromium, nickel and zinc: effects of salinity and temperature, and the osmoregulatory consequences in the mysid Praunus flexuosus. Aquatic Toxicology, 10(4), 225–238. https://doi.org/10.1016/0166-445X(87)90014-2.
McLusky, D. S., Bryant, V., & Cambell, R. (1986). The effects of temperature and salinity on the toxicity of heavy metals to marine and estuarine invertebrates. Oceanography and Marine Biology, 24, 481–520.
Megharaj, M., Avudainayagam, S., & Naidu, R. (2003). Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste. Current Microbiology, 47(1), 0051–0054. https://doi.org/10.1007/s00284-002-3889-0.
Mishra, A. K., & Mohanty, B. (2008). Acute toxicity impacts of hexavalent chromium on behavior and histopathology of gill, kidney and liver of the freshwater fish, Channa punctatus (Bloch). Environmental Toxicology and Pharmacology, 26(2), 136–141. https://doi.org/10.1016/j.etap.2008.02.010.
Mishra, P., Panda, U. S., Pradhan, U., Kumar, C. S., Naik, S., Begum, M., & Ishwarya, J. (2015). Coastal water quality monitoring and modelling off Chennai city. Procedia Engineering, 116, 955–962. https://doi.org/10.1016/j.proeng.2015.08.386.
Nammalwar, P., Dalela, R. C., & Mane, U. E. (1985). Heavy metals pollution in Adyar estuary, Madras, India. Muzaffarnagar: The Academy of Environmental Biology.
Nhiwatiwa, T., Barson, M., Harrison, A. P., Utete, B., & Cooper, R. G. (2011). Metal concentrations in water, sediment and sharptooth catfish Clarias gariepinus from three peri-urban rivers in the upper Manyame catchment, Zimbabwe. African Journal of Aquatic Science, 36(3), 243–252. https://doi.org/10.2989/16085914.2011.636906.
Olojo, E. A. A., Olurin, K. B., Mbaka, G., & Oluwemimo, A. D. (2005). Histopathology of the gill and liver tissues of the African catfish Clarias gariepinus exposed to lead. African Journal of Biotechnology, 4(1), 117–122.
Pacheco, M., Santos, M. A., Pereira, P., Martínez, J. I., Alonso, P. J., Soares, M. J., & Lopes, J. C. (2013). EPR detection of paramagnetic chromium in liver of fish (Anguilla anguilla) treated with dichromate (VI) and associated oxidative stress responses-contribution to elucidation of toxicity mechanisms. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 157, 132–140. https://doi.org/10.1016/j.cbpc.2012.10.009.
Pelgrom, S. M. G. J., Lamers, L. P. M., Lock, R. A. C., Balm, P. H. M., & Wendelaar Bonga, S. E. (1995). Interactions between copper and cadmium modify metal organ distribution in mature tilapia, Oreochromis mossambicus. Environmental Pollution, 90(3), 415–423. https://doi.org/10.1016/0269-7491(95)00022-J.
Rajeshkumar, S., Liu, Y., Zhang, X., Ravikumar, B., Bai, G., & Li, X. (2018). Studies on seasonal pollution of heavy metals in water, sediment, fish and oyster from the Meiliang Bay of Taihu Lake in China. Chemosphere, 191, 626–638. https://doi.org/10.1016/j.chemosphere.2017.10.078.
Rajkumar, A. N., Barnes, J., Ramesh, R., Purvaja, R., & Upstill-Goddard, R. C. (2008). Methane and nitrous oxide fluxes in the polluted Adyar River and estuary, SE India. Marine Pollution Bulletin, 56(12), 2043–2051. https://doi.org/10.1016/j.marpolbul.2008.08.005.
Ravanaiah, G., & Narasimha Murthy, C. V. (2010). Accumulation of heavy metals in selected tissues of fish, Tilapia Mossambica collected from the Pennar Estuary. Life Science Bulletin, 7(2), 217–222.
Sachithanandam, V., Mageswaran, T., Sridhar, R., Arumugam, K., Purvaja, R., & Ramesh, R. (2017). Rapid assessment on mass mortality of fishes in Ennore estuary of Tamil Nadu, India. Indian Journal of Geomarine Science, 46(8), 1647–1650.
Sanyal, T., Kaviraj, A., & Saha, S. (2017). Toxicity and bioaccumulation of chromium in some freshwater fish. Human and Ecological Risk Assessment: An International Journal, 23(7), 1655–1667. https://doi.org/10.1080/10807039.2017.1336425.
Selvan, C. T., & Milton, J. (2016). Physicochemical analysis of coastal water of east coast of Tamil Nadu (Adyar Estuary). Journal of Zoological Studies, 3(4), 20–29.
Sesha Srinivas, V., & Rao, B. M. (1998). Chromium induced alterations in the gill of the freshwater teleost fish, Labeo rohita. Indian Journal of Comparative Animal Physiology, 17(1), 31–33.
Sfakianakis, D. G., Renieri, E., Kentouri, M., & Tsatsakis, A. M. (2015). Effect of heavy metals on fish larvae deformities: a review. Environmental Research, 137, 246–255. https://doi.org/10.1016/j.envres.2014.12.014.
Shanmugam, P., Neelamani, S., Ahn, Y. H., Philip, L., & Hong, G. H. (2007). Assessment of the levels of coastal marine pollution of Chennai city, Southern India. Water Resources Management, 21(7), 1187–1206.
Silambarasan, K., Senthilkumaar, P., & Velmurugan, K. (2012). Studies on the distribution of heavy metal concentrations in River Adyar, Chennai, Tamil Nadu. European Journal of Experimental Biology, 2(6), 2192–2198.
Somero, G. N., Chow, T. J., Yancey, P. H., & Snyder, C. B. (1977). Lead accumulation rates in tissues of the estuariane teleost fish, Gillichthys mirabilis: salinity and temperature effects. Archives of Environmental Contamination and Toxicology, 6(1), 337–348. https://doi.org/10.1007/BF02097774.
Spry, D. J., & Wiener, J. G. (1991). Metal bioavailability and toxicity to fish in low-alkalinity lakes: a critical review. Environmental Pollution, 71(2-4), 243–304. https://doi.org/10.1016/0269-7491(91)90034-T.
Sundararajan, M., & Srinivasalu, S. (2010). Geochemistry of core sediments from Gulf of Mannar, India. InternationalJournal of Environmental Research, 4(4), 861–876. https://doi.org/10.22059/IJER.2010.273.
Thophon, S., Pokethitiyook, P., Chalermwat, K., Upatham, E. S., & Sahaphong, S. (2004). Ultrastructural alterations in the liver and kidney of white sea bass, Lates calcarifer, in acute and subchronic cadmium exposure. Environmental Toxicology: An International Journal, 19(1), 11–19. https://doi.org/10.1002/tox.10146.
Twitchen, I. D., & Eddy, F. B. (1993). Sublethal effects of ammonia on freshwater fish. In Sublethal and chronic effects of pollutants on freshwater fish. In C. Muller & R. Lloyd (Eds.), EIFAC (European Inland Fisheries Advisory Commission) Symposium on Sublethal and Chronic Effects of Pollutants on Freshwater Fish. Oxford: Blackwell Scientific Publications (Fishing News Books).
Twitchen, I. D., & Eddy, F. B. (1994). Effects of ammonia on sodium balance in juvenile rainbow trout Oncorhynchus mykiss Walbaum. Aquatic Toxicology, 30(1), 2745. https://doi.org/10.1016/0166-445X(94)90004-3.
Van der Oost, R., Beyer, J., & Vermeulen, N. P. (2003). Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environmental Toxicology and Pharmacology, 13(2), 57–149. https://doi.org/10.1016/S1382-6689(02)00126-6.
Vasanthi, L. A., Revathi, P., Mini, J., & Munuswamy, N. (2013). Integrated use of histological and ultrastructural biomarkers in Mugil cephalus for assessing heavy metal pollution in Ennore estuary, Chennai. Chemosphere, 91(8), 1156–1164. https://doi.org/10.1016/j.chemosphere.2013.01.021.
Velma, V., & Tchounwou, P. B. (2009). Hexavalent chromium-induced multiple biomarker responses in liver and kidney of Gold fish, Carassius auratus. Environmental Toxicology, 26(6), 649–656. https://doi.org/10.1002/tox.20602.
Velma, V., Vutukuru, S. S., & Tchounwou, P. B. (2009). Ecotoxicology of hexavalent chromium in freshwater fish: a critical review. Reviews on Environmental Health, 24(2), 129–146. https://doi.org/10.1515/REVEH.2009.24.2.129.
Venugopal, T., Giridharan, L., & Jayaprakash, M. (2008). Groundwater quality assessment using chemometric analysis in the Adyar River, South India. Archives of Environmental Contamination and Toxicology, 55(2), 180–190.
Venugopal, T., Giridharan, L., & Jayaprakash, M. (2010). Application of chemometric analysis for identifying pollution sources: a case study on the River Adyar, India. Marine and Freshwater Research, 60(12), 1254–1264. https://doi.org/10.1071/MF08178.
Vinodhini, R., & Narayanan, M. (2009). Heavy metal induced histopathological alterations in selected organs of the Cyprinus carpio L. (Common Carp). International Journal of Environmental Research, 3(1), 95–100.
Walsh, S., Copeland, C., & Westlake, M. (2004). Major fish kills in the northern rivers of NSW in 2001: Causes, impacts and responses. In Fisheries Final Report Series No. 68 (pp. 1–55). New South Wales: NSW Department of Primary Industries.
Wicklund, A., Runn, P., & Norrgren, L. (1988). Cadmium and zinc interactions in fish: effects of zinc on the uptake, organ distribution, and elimination of 109Cd in the zebrafish, Brachydanio rerio. Archives of Environmental Contamination and Toxicology, 17(3), 345–354. https://doi.org/10.1007/BF01055172.
Yancheva, V., Velcheva, I., Stoyanova, S., & Georgieva, E. (2016). Histological biomarkers in fish as a tool in ecological risk assessment and monitoring programs: a review. Applied Ecology and Environmental Research, 14(1), 47–75. https://doi.org/10.15666/aeer/1401_047075.
Yujun, Y., Zhaoyin, W., Zhang, K., Guoan, Y. U., & Xuehua, D. (2008). Sediment pollution and its effect on fish through food chain in the Yangtze River. International Journal of Sediment Research, 23(4), 338–347. https://doi.org/10.1016/S1001-6279(09)60005-6.
Acknowledgements
Authors are grateful to Dr. T. Sasipraba, the Pro-Vice-Chancellor and the management of Satyabhama Institute of Science and Technology for their support and facilities.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Saleem Raja, U.K., Ebenezer, V., Kumar, A. et al. Mass mortality of fish and water quality assessment in the tropical Adyar estuary, South India. Environ Monit Assess 191, 512 (2019). https://doi.org/10.1007/s10661-019-7636-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10661-019-7636-4
Keywords
- Fish
- Mugil cephalus
- Mass mortality
- Adyar estuary
- Chromium toxicity
- Physico-chemical parameters
- Histology