Skip to main content

Advertisement

Log in

Drought hazard in Kazakhstan in 2000–2016: a remote sensing perspective

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Droughts have significant negative impacts on livelihoods and economy of Kazakhstan. In this study, we assessed and characterized drought hazard events in Kazakhstan using satellite Remote Sensing time series for the period between 2000 and 2016. First, we calculated Vegetation Condition Index (VCI) and Standardized Enhanced Vegetation Index anomalies (ZEVI) based on 250 m Moderate Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI) time series. Second, we assessed vegetation cover changes for the observation period. Third, we analyzed different characteristics of the drought hazard as well as spatial distribution of the drought-affected areas within the country. The results confirmed that drought was one of the environmental challenges for Kazakhstan in 2000–2016. The obtained maps showed that drought hazard conditions were observed every year, though the areal coverage of the drought conditions largely varied between the analyzed years. The calculated drought indices indicated that in years 2000, 2008, 2010, 2011, 2012, and 2014, more than 50% of the area of the country were affected by drought conditions of different severity with the largest droughts in terms of the areal spread occurring in 2012 and 2014. We concluded that the pre-requisite of successful implementation of drought hazard and risk mitigation strategies is availability of spatially explicit, timely, and reliable information on drought hazard. This suggests the necessity of incorporation of remote sensing–based drought information, as was demonstrated in this paper, in the national drought monitoring system of Kazakhstan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anyamba, A., & Tucker, C. J. (2005). Analysis of Sahelian vegetation dynamics using NOAA-AVHRR NDVI data from 1981–2003. Journal of Arid Environments, 63, 596–614. https://doi.org/10.1016/j.jaridenv.2005.03.007.

    Article  Google Scholar 

  • Aw-Hassan, A., Korol, V., Nishanov, N., Djanibekov, U., Dubovyk, O., & Mirzabaev, A. (2016). Economics of Land Degradation and Improvement in Uzbekistan. In Economics of land degradation and improvement – a global assessment for sustainable development (pp. 651–682). Cham: Springer.

    Chapter  Google Scholar 

  • Barrett, T., Feola, G., Khusnitdinova, M., & Krylova, V. (2017). Adapting agricultural water use to climate change in a post-soviet context: challenges and opportunities in Southeast Kazakhstan. Human Ecology, 45, 747–762. https://doi.org/10.1007/s10745-017-9947-9.

    Article  Google Scholar 

  • Beguería, S., Vicente-Serrano, S. M., Reig, F., & Latorre, B. (2014). Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. International Journal of Climatology, 34, 3001–3023.

    Article  Google Scholar 

  • Below, R., Grover-Kopec, E., & Dilley, M. (2007). Documenting drought-related disasters: a global reassessment. Journal of Environment & Development, 16, 328–344. https://doi.org/10.1177/1070496507306222.

    Article  Google Scholar 

  • de Beurs, K. M., Henebry, G. M., Owsley, B. C., & Sokolik, I. (2015). Using multiple remote sensing perspectives to identify and attribute land surface dynamics in Central Asia 2001–2013. Remote Sensing of Environment, 170, 48–61. https://doi.org/10.1016/j.rse.2015.08.018.

    Article  Google Scholar 

  • Bhuiyan, C., Singh, R. P., & Kogan, F. N. (2006). Monitoring drought dynamics in the Aravalli region (India) using different indices based on ground and remote sensing data. International Journal of Applied Earth Observation and Geoinformation, 8, 289–302. https://doi.org/10.1016/j.jag.2006.03.002.

    Article  Google Scholar 

  • Bokusheva, R., Kogan, F., Vitkovskaya, I., Conradt, S., & Batyrbayeva, M. (2016). Satellite-based vegetation health indices as a criteria for insuring against drought-related yield losses. Agricultural and Forest Meteorology, 220, 200–206. https://doi.org/10.1016/j.agrformet.2015.12.066.

    Article  Google Scholar 

  • Broka, S., Giertz, Asa, Christensen, G., Rasmussen, D., Morgounov, A., Fileccia, T., Rubaiza, R.. (2016) Kazakhstan agricultural sector risk assessment

  • Carrao, H., Naumann, G., & Barbosa, P. (2016). Mapping global patterns of drought risk: an empirical framework based on sub-national estimates of hazard, exposure and vulnerability. Global Environmental Change, 39, 108–124.

    Article  Google Scholar 

  • Chen, X., Bai, J., Li, X., Luo, G., Li, J., & Li, B. L. (2013). Changes in land use/land cover and ecosystem services in Central Asia during 1990–2009. Current Opinion in Environment Sustainability, 5, 116–127. https://doi.org/10.1016/j.cosust.2012.12.005.

    Article  Google Scholar 

  • Dubovyk, O.. (2013) Multi-scale targeting of land degradation in northern Uzbekistan using satellite remote sensing

  • Dubovyk, O., Landmann, T., Dietz, A., & Menz, G. (2016). Quantifying the impacts of environmental factors on vegetation dynamics over climatic and management gradients of Central Asia. Remote Sensing, 8, 600. https://doi.org/10.3390/rs8070600.

    Article  Google Scholar 

  • Eisfelder, C., Klein, I., Niklaus, M., & Kuenzer, C. (2014). Net primary productivity in Kazakhstan, its spatio-temporal patterns and relation to meteorological variables. Journal of Arid Environments, 103, 17–30. https://doi.org/10.1016/j.jaridenv.2013.12.005.

    Article  Google Scholar 

  • Esekin, B.K.. (2000) Kazakhstan, State of the environment. Natl. Environ. Cent. Sustain. Dev. Repub. Kazakhstan

  • FAO, The World Bank. (2019) understanding the drought impact of El Niño/La Niña in the grain production areas in Eastern Europe and Central Asia: Russia, Ukraine and Kazakhstan., http://www.fao.org/3/ca3758en/ca3758en.pdf

  • Graw, V., Ghazaryan, G., Dall, K., Delgado Gómez, A., Abdel-Hamid, A., Jordaan, A., Piroska, R., Post, J., Szarzynski, J., Walz, Y., & Dubovyk, O. (2017). Drought dynamics and vegetation productivity in different land management systems of Eastern Cape, South Africa—a remote sensing perspective. Sustainability., 9, 1728. https://doi.org/10.3390/su9101728.

    Article  Google Scholar 

  • Gupta, S.C.. (2011) Fundamentals of statistics. Himalaya Publishing House.

  • Hamidov, A., Helming, K., & Balla, D. (2016). Impact of agricultural land use in Central Asia: a review. Agronomy for Sustainable Development, 36, 6. https://doi.org/10.1007/s13593-015-0337-7.

    Article  Google Scholar 

  • Hao, Z., Hao, F., Singh, V. P., Ouyang, W., & Cheng, H. (2017). An integrated package for drought monitoring, prediction and analysis to aid drought modeling and assessment. Environmental Modelling and Software, 91, 199–209. https://doi.org/10.1016/j.envsoft.2017.02.008.

    Article  Google Scholar 

  • Harris, I., Jones, P. D., Osborn, T. J., & Lister, D. H. (2014). Updated high-resolution grids of monthly climatic observations–the CRU TS3. 10 Dataset. International Journal of Climatology, 34, 623–642.

    Article  Google Scholar 

  • Hoaglin, D.C., Mosteller, F., Tukey, J.W.. (2000) Understanding robust and exploratory data analysis

  • Huang, A., Zhou, Y., Zhang, Y., Huang, D., Zhao, Y., & Wu, H. (2014). Changes of the annual precipitation over Central Asia in the twenty-first century projected by multimodels of CMIP5. Journal of Climate, 27, 6627–6646. https://doi.org/10.1175/JCLI-D-14-00070.1.

    Article  Google Scholar 

  • Jiang, L., Jiapaer, G., Bao, A., Guo, H., & Ndayisaba, F. (2017). Vegetation dynamics and responses to climate change and human activities in Central Asia. Science of the Total Environment, 599–600, 967–980. https://doi.org/10.1016/j.scitotenv.2017.05.012.

    Article  CAS  Google Scholar 

  • Kariyeva, J., van Leeuwen, W. J. D., & Woodhouse, C. A. (2012). Impacts of climate gradients on the vegetation phenology of major land use types in Central Asia (1981–2008). Frontiers in Earth Science, 6, 206–225. https://doi.org/10.1007/s11707-012-0315-1.

    Article  Google Scholar 

  • Kendall, M. G. (1938). A new measure of rank correlation. Biometrika., 30, 81–93.

    Article  Google Scholar 

  • Klein, I., Gessner, U., & Künzer, C. (2014). Generation of up to date land cover maps for Central Asia. In Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia (pp. 329–346). Cham: Springer.

    Chapter  Google Scholar 

  • Kogan, F. N. (1990). Remote sensing of weather impacts on vegetation in non-homogeneous areas. International Journal of Remote Sensing, 11, 1405–1419. https://doi.org/10.1080/01431169008955102.

    Article  Google Scholar 

  • Kogan, F. N. (1995). Application of vegetation index and brightness temperature for drought detection. Advances in Space Research, 15, 91–100. https://doi.org/10.1016/0273-1177(95)00079-T.

    Article  Google Scholar 

  • Kogan, F. N. (1997). Global drought watch from space. Bulletin of the American Meteorological Society, 78, 621–636.

    Article  Google Scholar 

  • Kogan, F. (2002). World droughts in the new millennium from AVHRR-based vegetation health indices. EOS. Transactions of the American Geophysical Union, 83, 557–563. https://doi.org/10.1029/2002EO000382.

    Article  Google Scholar 

  • Kozhakhmetov, P., Zh., Nikiforova, L.N.. (2016) Weather elements of Kazakhstan in the context of global climate change, https://new.kazhydromet.kz/upload/pagefiles/nits/%D0%A3%D0%9A%D0%98%20%D0%9D%D0%98%D0%A6/eng/Climate%20Change_09-2017_ENG_Light.pdf

  • Kraemer, R., Prishchepov, A. V., Müller, D., Kuemmerle, T., Radeloff, V. C., Dara, A., Terekhov, A., & Frühauf, M. (2015). Long-term agricultural land-cover change and potential for cropland expansion in the former Virgin Lands area of Kazakhstan. Environmental Research Letters, 10, 054012. https://doi.org/10.1088/1748-9326/10/5/054012.

    Article  Google Scholar 

  • Kudebayeva, A., & Barrientos, A. (2017). A decade of poverty reduction in Kazakhstan 2001–2009: growth and/or redistribution? Journal of International Development, 29, 1166–1186.

    Article  Google Scholar 

  • Liefert, W., Liefert, O., Vocke, G., & Allen, E. (2010). Former Soviet Union region to play larger role in meeting world wheat needs. Amber Waves, 8, 12–19.

    Google Scholar 

  • Lioubimtseva, E. (2015). A multi-scale assessment of human vulnerability to climate change in the Aral Sea basin. Environment and Earth Science, 73, 719–729. https://doi.org/10.1007/s12665-014-3104-1.

    Article  Google Scholar 

  • Lioubimtseva, E., & Cole, R. (2006). Uncertainties of climate change in arid environments of Central Asia. Reviews in Fisheries Science, 14, 29–49. https://doi.org/10.1080/10641260500340603.

    Article  Google Scholar 

  • Lioubimtseva, E., Cole, R., Adams, J. M., & Kapustin, G. (2005). Impacts of climate and land-cover changes in arid lands of Central Asia. Journal of Arid Environments, 62, 285–308. https://doi.org/10.1016/j.jaridenv.2004.11.005.

    Article  Google Scholar 

  • Liouimtseva, E.. (2009) Human dimensions of climate change in arid and semi-arid environments: a case study of post-Soviet Central Asia

  • Löw, F., Fliemann, E., Abdullaev, I., Conrad, C., & Lamers, J. P. A. (2015). Mapping abandoned agricultural land in Kyzyl-Orda, Kazakhstan using satellite remote sensing. Applied Geography, 62, 377–390. https://doi.org/10.1016/j.apgeog.2015.05.009.

    Article  Google Scholar 

  • Löw, F., Biradar, C., Dubovyk, O., Fliemann, E., Akramkhanov, A., Vallejo, A. N., & Waldner, F. (2017). Regional-scale monitoring of cropland intensity and productivity with multi-source satellite image time series. GIScience & Remote Sensing, 55, 539–567. 0, 1–29. https://doi.org/10.1080/15481603.2017.1414010.

    Article  Google Scholar 

  • Lu, L., Guo, H., Kuenzer, C., Klein, I., Zhang, L., & Li, X. (2014). Analyzing phenological changes with remote sensing data in Central Asia. IOP Conference Series: Earth and Environmental Science, 17, 012005. https://doi.org/10.1088/1755-1315/17/1/012005.

    Article  Google Scholar 

  • Mann, H. B. (1945). Nonparametric tests against trend. Econometrica:Journal of Economic and Social, 13, 245–259.

    Article  Google Scholar 

  • Martínez-Fernández, J., González-Zamora, A., Sánchez, N., Gumuzzio, A., & Herrero-Jiménez, C. M. (2016). Satellite soil moisture for agricultural drought monitoring: assessment of the SMOS derived Soil Water Deficit Index. Remote Sensing of Environment, 177, 277–286. https://doi.org/10.1016/j.rse.2016.02.064.

    Article  Google Scholar 

  • McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology (pp. 179–183). MA: American Meteorological Society Boston.

    Google Scholar 

  • Meyfroidt, P., Schierhorn, F., Prishchepov, A. V., Müller, D., & Kuemmerle, T. (2016). Drivers, constraints and trade-offs associated with recultivating abandoned cropland in Russia, Ukraine and Kazakhstan. Global Environmental Change, 37, 1–15. https://doi.org/10.1016/j.gloenvcha.2016.01.003.

    Article  Google Scholar 

  • Ministry of Energy of the Republic of Kazakhstan Republican state enterprise “Kazhydromet”, (2015) Annual bulletin on climate change and climate monitoring in Kazakhstan, https://kazhydromet.kz/upload/pdf/climat/en_1495436641.pdf, (2016)

  • Mirzabaev, A., Goedecke, J., Dubovyk, O., Djanibekov, U., Le, Q. B., & Aw-Hassan, A. (2016). Economics of land degradation in Central Asia. In Economics of land degradation and improvement – a global assessment for sustainable development (pp. 261–290). Cham: Springer.

    Chapter  Google Scholar 

  • National Drought Mitigation Center, (2008) Food and Agriculture Organization: The Near East Drought Planning Manual

  • Neeti, N., & Eastman, J. R. (2011). A contextual Mann-Kendall approach for the assessment of trend significance in image time series. Transactions in GIS, 15, 599–611. https://doi.org/10.1111/j.1467-9671.2011.01280.x.

    Article  Google Scholar 

  • Parkinson, C.L., Greenstone, R., Closs, J.. (2000) EOS data products handbook. Volume 2

  • Parmentier, B., & Eastman, J. R. (2014). Land transitions from multivariate time series: using seasonal trend analysis and segmentation to detect land-cover changes. International Journal of Remote Sensing, 35, 671–692. https://doi.org/10.1080/01431161.2013.871595.

    Article  Google Scholar 

  • Prishchepov, A. V., Radeloff, V. C., Baumann, M., Kuemmerle, T., & Müller, D. (2012). Effects of institutional changes on land use: agricultural land abandonment during the transition from state-command to market-driven economies in post-Soviet Eastern Europe. Environmental Research Letters, 7, 024021. https://doi.org/10.1088/1748-9326/7/2/024021.

    Article  Google Scholar 

  • Propastin, P.A., Kappas, M., Muratova, N.R.. (2008) Inter-annual changes in vegetation activities and their relationship to temperature and precipitation in Central Asia from 1982 to 2003. Journal of Environmental Informatics 12

  • Quiring, S. M., & Ganesh, S. (2010). Evaluating the utility of the Vegetation Condition Index (VCI) for monitoring meteorological drought in Texas. Agricultural and Forest Meteorology, 150, 330–339. https://doi.org/10.1016/j.agrformet.2009.11.015.

    Article  Google Scholar 

  • Republican State Enterprise “Kazhydromet”. (2015) 6. Assessment report on climate change in Kazakhstan

  • Rojas, O., Piersante, A., Cumani, M., Li, Y.. (2019) Understanding the drought impact of El Niño/La Niña in the grain production areas in Eastern Europe and Central Asia. World Bank Publ

  • Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall’s Tau. Journal of the American Statistical Association, 63, 1379–1389. https://doi.org/10.1080/01621459.1968.10480934.

    Article  Google Scholar 

  • Siebert, S., Webber, H., & Rezaei, E. E. (2017). Weather impacts on crop yields-searching for simple answers to a complex problem. Environmental Research Letters, 12, 081001.

    Article  Google Scholar 

  • Theil, H. (1992). A rank-invariant method of linear and polynomial regression analysis. In Henri Theil’s contributions to economics and econometrics (pp. 345–381). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Unganai, L. S., & Kogan, F. N. (1998). Drought monitoring and corn yield estimation in Southern Africa from AVHRR Data. Remote Sensing of Environment, 63, 219–232. https://doi.org/10.1016/S0034-4257(97)00132-6.

    Article  Google Scholar 

  • Van Hoolst, R., Eerens, H., Haesen, D., Royer, A., Bydekerke, L., Rojas, O., Li, Y., & Racionzer, P. (2016). FAO’s AVHRR-based Agricultural Stress Index System (ASIS) for global drought monitoring. International Journal of Remote Sensing, 37, 418–439.

    Article  Google Scholar 

  • Vermote, E. F., El Saleous, N. Z., & Justice, C. O. (2002). Atmospheric correction of MODIS data in the visible to middle infrared: first results. Remote Sensing of Environment, 83, 97–111.

    Article  Google Scholar 

  • Vicente-Serrano, S., Beguería, S., Latorre, B., Reig, F.. (2019) SPEI, the Standardised Precipitation-Evapotranspiration Index, https://spei.csic.es/

  • Wilhite, D. A., & Glantz, M. H. (1985). Understanding: the drought phenomenon: the role of definitions. Water International, 10, 111–120.

    Article  Google Scholar 

  • World Bank. (2005) Drought : management and mitigation assessment for Central Asia and the Caucasus (English), http://documents.worldbank.org/curated/en/135721468036310201/Drought-management-and-mitigation-assessment-for-Central-Asia-and-the-Caucasus

  • World Bank. (2006) Drought management and mitigation assessment for Central Asia and the Caucasus: regional and country profiles and strategies, http://siteresources.worldbank.org/INTECAREGTOPRURDEV/Resources/CentralAsiaCaucasusDroughtProfiles&Strategies-Eng.pdf

  • Wu, J., Zhou, L., Mo, X., Zhou, H., Zhang, J., & Jia, R. (2015). Drought monitoring and analysis in China based on the Integrated Surface Drought Index (ISDI). International Journal of Applied Earth Observation and Geoinformation, 41, 23–33. https://doi.org/10.1016/j.jag.2015.04.006.

    Article  Google Scholar 

  • Xu, L., Zhou, H., Du, L., Yao, H., & Wang, H. (2015). Precipitation trends and variability from 1950 to 2000 in arid lands of Central Asia. Journal of Arid Land, 7, 514–526. https://doi.org/10.1007/s40333-015-0045-9.

    Article  Google Scholar 

  • Xu, H., Wang, X., & Zhang, X. (2016). Decreased vegetation growth in response to summer drought in Central Asia from 2000 to 2012. International Journal of Applied Earth Observation and Geoinformation, 52, 390–402. https://doi.org/10.1016/j.jag.2016.07.010.

    Article  Google Scholar 

  • Zambrano, F., Lillo-Saavedra, M., Verbist, K., & Lagos, O. (2016). Sixteen years of agricultural drought assessment of the BioBío region in Chile Using a 250 m Resolution Vegetation Condition Index (VCI). Remote Sensing, 8, 530. https://doi.org/10.3390/rs8060530.

    Article  Google Scholar 

  • Zhang, A., & Jia, G. (2013). Monitoring meteorological drought in semiarid regions using multi-sensor microwave remote sensing data. Remote Sensing of Environment, 134, 12–23. https://doi.org/10.1016/j.rse.2013.02.023.

    Article  Google Scholar 

  • Zhang, L., Jiao, W., Zhang, H., Huang, C., & Tong, Q. (2017a). Studying drought phenomena in the Continental United States in 2011 and 2012 using various drought indices. Remote Sensing of Environment, 190, 96–106. https://doi.org/10.1016/j.rse.2016.12.010.

    Article  Google Scholar 

  • Zhang, X., Chen, N., Li, J., Chen, Z., & Niyogi, D. (2017b). Multi-sensor integrated framework and index for agricultural drought monitoring. Remote Sensing of Environment, 188, 141–163. https://doi.org/10.1016/j.rse.2016.10.045.

    Article  Google Scholar 

  • Zhou, Y., Zhang, L., Fensholt, R., Wang, K., Vitkovskaya, I., & Tian, F. (2015). Climate contributions to vegetation variations in Central Asian Drylands: pre- and post-USSR collapse. Remote Sensing, 7, 2449–2470. https://doi.org/10.3390/rs70302449.

    Article  Google Scholar 

Download references

Funding

The research support was provided by the German Federal Ministry of Education and Research (Project: GlobeDrought, grant no. 02WGR1457F BMBF Project ID: 02WGR1457A-F).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olena Dubovyk.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubovyk, O., Ghazaryan, G., González, J. et al. Drought hazard in Kazakhstan in 2000–2016: a remote sensing perspective. Environ Monit Assess 191, 510 (2019). https://doi.org/10.1007/s10661-019-7620-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7620-z

Keywords

Navigation