Skip to main content
Log in

Phytoassessment of Vetiver grass enhanced with EDTA soil amendment grown in single and mixed heavy metal–contaminated soil

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Over the years, ethylene-diamine-tetra-acetate (EDTA) has been widely used for many purposes. However, there are inadequate phytoassessment studies conducted using EDTA in Vetiver grass. Hence, this study evaluates the phytoassessment (growth performance, accumulation trends, and proficiency of metal uptake) of Vetiver grass, Vetiveria zizanioides (Linn.) Nash in both single and mixed heavy metal (Cd, Pb, Cu, and Zn)—disodium EDTA-enhanced contaminated soil. The plant growth, metal accumulation, and overall efficiency of metal uptake by different plant parts (lower root, upper root, lower tiller, and upper tiller) were thoroughly examined. The relative growth performance, metal tolerance, and phytoassessment of heavy metal in roots and tillers of Vetiver grass were examined. Metals in plants were measured using the flame atomic absorption spectrometry (F-AAS) after acid digestion. The root-tiller (R/T) ratio, biological concentration factor (BCF), biological accumulation coefficient (BAC), tolerance index (TI), translocation factor (TF), and metal uptake efficacy were used to estimate the potential of metal accumulation and translocation in Vetiver grass. All accumulation of heavy metals were significantly higher (p < 0.05) in both lower and upper roots and tillers of Vetiver grass for Cd + Pb + Cu + Zn + EDTA treatments as compared with the control. The single Zn + EDTA treatment accumulated the highest overall total amount of Zn (8068 ± 407 mg/kg) while the highest accumulation for Cu (1977 ± 293 mg/kg) and Pb (1096 ± 75 mg/kg) were recorded in the mixed Cd + Pb + Cu + Zn + EDTA treatment, respectively. Generally, the overall heavy metal accumulation trends of Vetiver grass were in the order of Zn >>> Cu > Pb >> Cd for all treatments. Furthermore, both upper roots and tillers of Vetiver grass recorded high tendency of accumulation for appreciably greater amounts of all heavy metals, regardless of single and/or mixed metal treatments. Thus, Vetiver grass can be recommended as a potential phytoextractor for all types of heavy metals, whereby its tillers will act as the sink for heavy metal accumulation in the presence of EDTA for all treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aksorn, E., & Chitsomboon, B. (2013). Bioaccumulation of heavy metal uptake by two different vetiver grass (Vetiveria zizanioides and Vetiveria nemoralis) species. African Journal of Agricultural Research, 8, 3166–3171.

    Google Scholar 

  • Ali, S. Y., & Chaudhury, S. (2016). EDTA-enhanced phytoextraction by Tagetes sp. and effect on bioconcentration and translocation of heavy metals. Environ Process, 3, 735–746.

    Article  CAS  Google Scholar 

  • Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals - concepts and applications. Chemosphere, 91, 869–881.

    Article  CAS  Google Scholar 

  • Alloway, B. J. (2013). Sources of heavy metals and metalloids in soils. In Heavy metals in soils (pp. 11–50). Netherlands: Springer.

    Chapter  Google Scholar 

  • Andra, S. S., Datta, R., Reddy, R., Saminathan, S. K., & Sarkar, D. (2011). Antioxidant enzymes response in vetiver grass: a greenhouse study for chelant-assisted phytoremediation of lead-contaminated residential soils. CLEAN–Soil Air Water, 39, 428–436.

    Article  CAS  Google Scholar 

  • Anjum, N. A., Pereira, M. E., Ahmad, I., Duarte, A. C., Umar, S., & Khan, N. A. (Eds.). (2012). Phytotechnologies: remediation of environmental contaminants. CRC Press. United States: Florida.

    Google Scholar 

  • Anning, A. K., & Akoto, R. (2018). Assisted phytoremediation of heavy metal contaminated soil from a mined site with Typha latifolia and Chrysopogon zizanioides. Ecotoxicology and Environmental Safety, 148, 97–104.

    Article  CAS  Google Scholar 

  • Antiochia, R., Campanella, L., Ghezzi, P., & Movassaghi, K. (2007). The use of vetiver for remediation of heavy metal soil contamination. Analytical and Bioanalytical Chemistry, 388, 947–956.

    Article  CAS  Google Scholar 

  • Baker, A. J. M., & Brooks, R. (1989). Terrestrial higher plants which hyperaccumulate metallic elements: a review of their distribution, ecology and phytochemistry. Biorecovery, 1, 81–126.

    CAS  Google Scholar 

  • Bennedsen, L. R., Krischker, A., Jørgensen, T. H., & Søgaard, E. G. (2012). Mobilization of metals during treatment of contaminated soils by modified Fenton’s reagent using different chelating agents. Journal of Hazardous Materials, 199, 128–134.

    Article  Google Scholar 

  • Bloem, E., Haneklaus, S., Haensch, R., & Schnug, E. (2017). EDTA application on agricultural soils affects microelement uptake of plants. Science of the Total Environment, 577, 166–173.

    Article  CAS  Google Scholar 

  • Bradl, H. (Ed.). (2005). Heavy metals in the environment: origin, interaction and remediation (Vol. 6). Netherlands: Academic Press.

    Google Scholar 

  • CCME, Canadian Council of Ministers of the Environment. (1999). Canadian soil quality guidelines for the protection of environmental and human health. In: Canadian environmental quality guidelines, Canada.

    Google Scholar 

  • Chen, H., & Cutright, T. (2001). EDTA and HEDTA effects on Cd, Cr, and Ni uptake by Helianthus annuus. Chemosphere, 45, 21–28.

    Article  CAS  Google Scholar 

  • Chen, B., Shen, H., Li, X., Feng, G., & Christie, P. (2004a). Effects of EDTA application and arbuscular mycorrhizal colonization on growth and zinc uptake by maize (Zea mays L.) in soil experimentally contaminated with zinc. Plant and Soil, 261(1-2), 219–229.

    Article  CAS  Google Scholar 

  • Chen, Y., Li, X., & Shen, Z. (2004b). Leaching and uptake of heavy metals by ten different species of plants during an EDTA-assisted phytoextraction process. Chemosphere, 57, 187–196.

    Article  CAS  Google Scholar 

  • Chen, Y., Shen, Z., & Li, X. (2004c). The use of vetiver grass (Vetiveria zizanioides) in the phytoremediation of soils contaminated with heavy metals. Applied Geochemistry, 19, 1553–1565.

    Article  CAS  Google Scholar 

  • Chen, Y., Li, X., & Shen, Z. (2018). Chelant-enhanced phytoextraction of heavy metal-contaminated soils and its environmental risk assessment. Twenty years of research and development on soil pollution and remediation in China (pp. 509–533). Singapore: Springer.

    Book  Google Scholar 

  • Chopra, A. K., Pathak, C., & Parasad, G. (2009). Scenario of heavy metal contamination in agricultural soil and its management. Journal of Applied Natural Science, 1, 99–108.

    Article  Google Scholar 

  • Danh, L. T., Truong, P., Mammucari, R., Tran, T., & Foster, N. (2009). Vetiver grass, Vetiveria zizanioides: a choice plant for phytoremediation of heavy metals and organic wastes. International Journal of Phytoremediation, 11, 664–691.

    Article  CAS  Google Scholar 

  • Demirbas, A. (2008). Heavy metal adsorption onto agro-based waste materials: a review. Journal of Hazardous Materials, 157, 220–229.

    Article  CAS  Google Scholar 

  • Dipu, S., Kumar, A. A., & Thanga, S. G. (2012). Effect of chelating agents in phytoremediation of heavy metals. Remediation Journal, 22, 133–146.

    Article  Google Scholar 

  • DOE, Malaysian Department of Environment. (2009). Contaminated land management and control guidelines No. 1: Malaysian recommended site screening levels for contaminated land. Malaysia: Department of Environment, Ministry of Natural Resources and Environment.

    Google Scholar 

  • Duruibe, J. O., Ogwuegbu, M. O. C., & Egwurugwu, J. N. (2007). Heavy metal pollution and human biotoxic effects. International Journal of Physical Sciences, 2, 112–118.

    Google Scholar 

  • European Chemicals Bureau. (2004). European Union risk assessment report: edetic acid (EDTA). EUR 21314 EN European Commission, Luxembourg

  • Garbisu, C., & Alkorta, I. (2001). Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresource Technology, 77, 229–236.

    Article  CAS  Google Scholar 

  • Goel, S., & Gautam, A. (2010). Effect of chelating agents on mobilization of metal from waste catalyst. Hydrometallurgy, 101, 120–125.

    Article  CAS  Google Scholar 

  • Grčman, H., Velikonja-Bolta, Š., Vodnik, D., Kos, B., & Leštan, D. (2001). EDTA enhanced heavy metal phytoextraction: metal accumulation, leaching and toxicity. Plant and Soil, 235, 105–114.

    Article  Google Scholar 

  • Hadi, F., Bano, A., & Fuller, M. P. (2010). The improved phytoextraction of lead (Pb) and the growth of maize (Zea mays L.): the role of plant growth regulators (GA3 and IAA) and EDTA alone and in combinations. Chemosphere, 80, 457–462.

    Article  CAS  Google Scholar 

  • Han, F. X., Su, Y., Monts, D. L., & Sridhar, B. B. M. (2004). Distribution, transformation and bioavailability of trivalent and hexavalent chromium in contaminated soil. Plant and Soil, 265, 243–252.

    Article  CAS  Google Scholar 

  • Hasanuzzaman, M., & Fujita, M. (2013). Heavy metals in the environment: current status, toxic effects on plants and phytoremediation. In N. A. Anjum, M. E. Pereira, I. Ahmad, A. C. Duarte, S. Umar, & N. A. Khan (Eds.), Phytotechnologies: remediation of environmental contaminants CRC Press (pp. 7–73). United States: Florida.

    Google Scholar 

  • Hovsepyan, A., & Greipsson, S. (2005). EDTA-enhanced phytoremediation of lead-contaminated soil by corn. Journal of Plant Nutrition, 28, 2037–2048.

    Article  CAS  Google Scholar 

  • Järup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68, 167–182.

    Article  Google Scholar 

  • Jean-Soro, L., Bordas, F., & Bollinger, J. C. (2012). Column leaching of chromium and nickel from a contaminated soil using EDTA and citric acid. Environmental Pollution, 164, 175–181.

    Article  CAS  Google Scholar 

  • Jiang, M., Liu, S., Li, Y., Li, X., Luo, Z., Song, H., & Chen, Q. (2019). EDTA-facilitated toxic tolerance, absorption and translocation and phytoremediation of lead by dwarf bamboos. Ecotoxicology and Environmental Safety, 170, 502–512.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A. (2010). Trace elements in soils and plants. Florida: CRC United States.

    Book  Google Scholar 

  • Lado, L. R., Hengl, T., & Reuter, H. I. (2008). Heavy metals in European soils: a geostatistical analysis of the FOREGS geochemical database. Geoderma, 148, 189–199.

    Article  CAS  Google Scholar 

  • Lai, H. Y., & Chen, Z. S. (2004). Effects of EDTA on solubility of cadmium, zinc, and lead and their uptake by rainbow pink and vetiver grass. Chemosphere, 55, 421–430.

    Article  CAS  Google Scholar 

  • Lai, H. Y., & Chen, Z. S. (2005). The EDTA effect on phytoextraction of single and combined metals-contaminated soils using rainbow pink (Dianthus chinensis). Chemosphere, 60, 1062–1071.

    Article  CAS  Google Scholar 

  • Leleyter, L., Rousseau, C., Biree, L., & Baraud, F. (2012). Comparison of EDTA, HCl and sequential extraction procedures, for selected metals (Cu, Mn, Pb, Zn), in soils, riverine and marine sediments. Journal of Geochemical Exploration, 116, 51–59.

    Article  Google Scholar 

  • Luo, C., Shen, Z., & Li, X. (2005). Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere, 59, 1–11.

    Article  CAS  Google Scholar 

  • Luo, J., Qi, S., Gu, X. S., Wang, J., & Xie, X. (2016a). An evaluation of EDTA additions for improving the phytoremediation efficiency of different plants under various cultivation systems. Ecotoxicol, 25, 646–654.

    Article  CAS  Google Scholar 

  • Luo, J., Qi, S., Gu, X. S., Hou, T., & Lin, L. (2016b). Ecological risk assessment of EDTA-assisted phytoremediation of Cd under different cultivation systems. Bulletin of Environmental Contamination and Toxicology, 96, 259–264.

    Article  CAS  Google Scholar 

  • Luo, J., Cai, L., Qi, S., Wu, J., & Gu, X. S. (2018). Influence of direct and alternating current electric fields on efficiency promotion and leaching risk alleviation of chelator assisted phytoremediation. Ecotoxicology and Environmental Safety, 149, 241–247.

    Article  CAS  Google Scholar 

  • McIntyre, T. (2003). Phytoremediation of heavy metals from soils. In D. T. Tsao (Ed.), Phytoremediation (pp. 97–123). Berlin Heidelberg: Springer.

    Chapter  Google Scholar 

  • Meers, E., Qadir, M., De Caritat, P., Tack, F. M. G., Du, L. G., & Zia, M. H. (2009). EDTA-assisted Pb phytoextraction. Chemosphere, 74, 1279–1291.

    Article  Google Scholar 

  • Meuser, H. (2010). Causes of soil contamination in the urban environment. In H. Meuser (Ed.), Contaminated urban soils (pp. 29–94). Netherlands: Springer.

    Chapter  Google Scholar 

  • Mühlbachová, G. (2011). Soil microbial activities and heavy metal mobility in long-term contaminated soils after addition of EDTA and EDDS. Ecological Engineering, 37, 1064–1071.

    Article  Google Scholar 

  • Mulligan, C. N., Yong, R. N., & Gibbs, B. F. (2001). Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Engineering Geology, 60, 193–207.

    Article  Google Scholar 

  • Ng, C. C., Boyce, A. N., Rahman, M. M., & Abas, M. R. (2016). Effects of different soil amendments on mixed heavy metals contamination in Vetiver grass. Bulletin of Environmental Contamination and Toxicology, 97, 695–701.

    Article  CAS  Google Scholar 

  • Ng, C. C., Boyce, A. N., Rahman, M., & Abas, R. (2017). Tolerance threshold and phyto-assessment of cadmium and lead in vetiver grass, Vetiveria zizanioides (Linn.) Nash. Chiang Mai Journal of Science, 44, 1367–1378.

    CAS  Google Scholar 

  • Ng, C. C., Boyce, A. N., Rahman, M. M., Abas, M. R., & Mahmood, N. Z. (2018). Phyto-evaluation of Cd-Pb using tropical plants in soil-leachate conditions. Air, Soil and Water Research, 11, 1–9.

    Article  Google Scholar 

  • Oviedo, C., & Rodríguez, J. (2003). EDTA: the chelating agent under environmental scrutiny. Quim Nova, 26, 901–905.

    Article  CAS  Google Scholar 

  • Özkan, A., Günkaya, Z., & Banar, M. (2016). Pyrolysis of plants after phytoremediation of contaminated soil with lead, cadmium and zinc. Bulletin of Environmental Contamination and Toxicology, 96, 415–419.

    Article  Google Scholar 

  • Peng, J. F., Song, Y. H., Yuan, P., Cui, X. Y., & Qiu, G. L. (2009). The remediation of heavy metals contaminated sediment. Journal of Hazardous Materials, 161, 633–640.

    Article  CAS  Google Scholar 

  • Prasad, M. N. V., & Strzałka, K. (1999). Impact of heavy metals on photosynthesis. In M. N. V. Prasad & J. Hagemeyer (Eds.), (pp. 117–138). Heidelberg, Germany: Heavy metal stress in plants, Springer, Berlin.

    Google Scholar 

  • Seth, C. S., Misra, V., Singh, R. R., & Zolla, L. (2011). EDTA-enhanced lead phytoremediation in sunflower (Helianthus annuus L.) hydroponic culture. Plant and Soil, 347, 231–242.

    Article  CAS  Google Scholar 

  • Shahid, M., Austruy, A., Echevarria, G., Arshad, M., Sanaullah, M., Aslam, M., Nadeem, M., Nasim, W., & Dumat, C. (2014). EDTA-enhanced phytoremediation of heavy metals: a review. Soil and Sediment Contamination, 23, 389–416.

    Article  CAS  Google Scholar 

  • Sherameti, I., & Varma, A. (2010). Soil biology: soil heavy metals. In Springer. Heidelberg, Germany: Berlin.

    Google Scholar 

  • Sinegani, A. A. S., Tahmasbian, I., & Sinegani, M. S. (2015). Chelating agents and heavy metal phytoextraction. In I. Sherameti & A. Varma (Eds.), Heavy metal contamination of soils (pp. 367–393). Switzerland: Springer International Publishing.

    Chapter  Google Scholar 

  • Sommers, L. E., & Lindsay, W. L. (1979). Effect of pH and redox on predicted heavy metal-chelate equilibria in soils. Soil Science Society of America Journal, 43, 39–47.

    Article  CAS  Google Scholar 

  • Suthar, V., Memon, K. S., & Mahmood-ul-Hassan, M. (2014). EDTA-enhanced phytoremediation of contaminated calcareous soils: heavy metal bioavailability, extractability, and uptake by maize and sesbania. Environmental Monitoring and Assessment, 186, 3957–3968.

    Article  CAS  Google Scholar 

  • Truong, P., & Danh, L. T. (2015). The vetiver system for improving water quality: prevention and treatment of contaminated water and land (2nd ed.). Australia: The Vetiver Network International.

    Google Scholar 

  • Truong P, Van TT, Pinners E (2008) Vetiver system applications: a technical reference manual. Australia: The Vetiver Network International

    Google Scholar 

  • US EPA, United States of America Environmental Protection Agency. (1996). Method 3050B: acid digestion of sediments, sludges and soils. United States: Environmental Protection Agency.

    Google Scholar 

  • US EPA, United States of America Environmental Protection Agency. (2007). Method 7000B flame atomic absorption spectrophotometry. United States: Environmental Protection Agency.

    Google Scholar 

  • Van der Ent, A., Baker, A. J., Reeves, R. D., Pollard, A. J., & Schat, H. (2013). Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant and Soil, 362, 319–334.

    Article  Google Scholar 

  • Van Deuren, J., Lloyd, T., Chhetry, S., Liou, R., & Peck, J. (2002). Remediation technologies screening matrix and reference guide. In United States Federal Remediation Technologies Roundtable.

    Google Scholar 

  • Vargas, C., Pérez-Esteban, J., Escolástico, C., Masaguer, A., & Moliner, A. (2016). Phytoremediation of Cu and Zn by vetiver grass in mine soils amended with humic acids. Environmental Science and Pollution Research, 23, 13521–13530.

  • Wasino, R., Likitlersuang, S., & Janjaroen, D. (2019). The performance of vetivers (Chrysopogon zizaniodes and Chrysopogon nemoralis) on heavy metals phytoremediation. International Journal of Phytoremediation, 21, 624–633.

    Article  CAS  Google Scholar 

  • Wuana, R. A., Eneji, I. S., & Naku, J. U. (2016). Single and mixed chelants-assisted phytoextraction of heavy metals in municipal waste dump soil by castor. Advances in Environmental Research, 5, 19–35.

    Article  Google Scholar 

  • Zhao, Z., Xi, M., Jiang, G., Liu, X., Bai, Z., & Huang, Y. (2010). Effects of IDSA, EDDS and EDTA on heavy metals accumulation in hydroponically grown maize (Zea mays L.). Journal of Hazardous Materials, 181, 455–459.

    Article  CAS  Google Scholar 

  • Zhao, S., Lian, F., & Duo, L. (2011). EDTA-assisted phytoextraction of heavy metals by turfgrass from municipal solid waste compost using permeable barriers and associated potential leaching risk. Bioresource Technology, 102, 621–626.

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded with the financial supports received from the Malaysia Toray Science Foundation (STRG15/G251) and University of Malaya, Kuala Lumpur (PG006-2013A and RK001-2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuck Chuan Ng.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ng, C.C., Boyce, A.N., Abas, M.R. et al. Phytoassessment of Vetiver grass enhanced with EDTA soil amendment grown in single and mixed heavy metal–contaminated soil. Environ Monit Assess 191, 434 (2019). https://doi.org/10.1007/s10661-019-7573-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7573-2

Keywords

Navigation