Skip to main content

Ionic speciation and risks associated with agricultural use of industrial biosolid applied in Inceptisol

Abstract

The evaluation of the chemical leaching potential from soils amended with biosolid is of extreme importance for environmental safety of agricultural use of these residues. The objective of this study was to evaluate the polluting potential and possible risks associated with the agricultural use of biosolids generated by the polyethylene terephthalate (PET) fiber and resin industry through ionic speciation and analysis of the activity of chemical species present in the leached solution from Inceptisol treated with rates 0, 6, 12, 18, 24, 48, 96, and 144 Mg ha−1 on dry basis. The experiment was conducted in a lysimeter and the treatments with three replications were distributed at random. Chemical leaching was made by application of CaC12 0.01 mol L−1 solutions in a volume fourfold higher than the water retention capacity of the soil, divided into five leaching events: 210, 245, 280, 315, and 350 days of incubation. Chemical species concentrations in collected leachates were used for ionic speciation by geochemical software Visual MINTEQA2 version 4.0. Impact factor of chemical species was calculated as the ratio between maximum concentration in the leach solution in the treated soil and control. Dissolved organic carbon had strong influence on Pb+2 and Cu+2 leaching, but these elements in free or complexed forms presented low activities in solution. Leaching of NO3, Zn+2, and Na+ represents the main environmental risk of agricultural use of this residue. However, these risks can be minimized if technical criteria and critical limits for the agronomic use of biosolids were observed.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Abreu-Junior, C. H., Brossi, M. J. L., Monteiro, R. T., Cardoso, P. H. S., Mandu, T. S., Nogueira, T. A. R., Ganga, A., Filzmoser, P., de, O. F. C., Firme, L. P., He, Z., & Capra, G. F. (2019). Effects of sewage sludge application on unfertile tropical soils evaluated by multiple approaches: a field experiment in a commercial Eucalyptus plantation. Science of the Total Environment, 655, 1457–1467. https://doi.org/10.1016/j.scitotenv.2018.11.334.

    CAS  Article  Google Scholar 

  • Adamo, P., Agrelli, D., & Zampella, M. (2018). Chemical speciation to assess bioavailability, bioaccessibility and geochemical forms of potentially toxic metals (PTMS) in polluted soils. Environmental geochemistry (Sec. Ed.),Chapter 9, 153–194, https://doi.org/10.1016/B978-0-444-63763-5.00010-0

    Chapter  Google Scholar 

  • Agency for Toxic Substances and Disease Registry (ATSDR). (2017). Toxicological profile for nitrate and nitrite. U.S. Department of Health and Human Services https://www.atsdr.cdc.gov/toxprofiles/tp204.pdf.

  • Alvarenga, P., Farto, M., Mourinha, C., & Palma, P. (2016). Beneficial use of dewatered and composted sewage sludge as soil amendments: behaviour of metals in soils and their uptake by plants. Waste and Biomass Valorization, 7(5), 1189–1201. https://doi.org/10.1007/s12649-016-9519-z.

    CAS  Article  Google Scholar 

  • American Public Health Association - APHA. (2005). Standard methods for the examination of water and wastewater (21th ed.). Washington D. C: APHA-AWWA-WEF 1134p.

    Google Scholar 

  • Araújo, E., Strawn, D. G., Morra, M., Moore, A., & Alleoni, L. R. F. (2019). Association between extracted copper and dissolved organic matter in dairy-manure amended soils. Environmental Pollution, 246, 1020–1026. https://doi.org/10.1016/j.envpol.2018.12.070.

    CAS  Article  Google Scholar 

  • Borba, R. P., Ribeirinho, V. S., Camargo, O. A., Andrade, C. A., Kira, C. S., & Coscione, A. R. (2018). Ion leaching and soil solution acidification in a vadose zone under soil treated with sewage sludge for agriculture. Chemosphere, 192, 81–89. https://doi.org/10.1016/j.chemosphere.2017.10.112.

    CAS  Article  Google Scholar 

  • Brasil. (2006). Conselho Nacional de Meio Ambiente - CONAMA. Resolução n. 375 de 29 de agosto de 2006. Define critérios e procedimentos, para o uso de lodos de esgoto gerados em estações de tratamento de esgoto sanitário e seus produtos derivados, e dá outras providências. Diário Oficial da União. Poder Executivo, Brasília: DF, 30 ago. Seção 1., 141p. (Portuguese).

  • Brasil. (2017). Ministério da Saúde. In Anexo XX da Portaria n. 5 – Consolidação das Normas Sobre as Ações e os Serviços de Saúde do Sistema Único de Saúde.

    Google Scholar 

  • Chomycia, J. C., Hernes, P. J., Harter, T., & Bergamaschi, B. A. (2008). Land management impacts on dairy-derived dissolved organic carbon in ground water. Journal of Environmental Quality, 37(2), 333–343. https://doi.org/10.2134/jeq2007.0183.

    CAS  Article  Google Scholar 

  • Chowdhury, R. B., Moore, G. A., Weatherley, A. J., & Arora, M. (2017). Key sustainability challenges for the global phosphorus resource, their implications for global food security, and options for mitigation. Journal of Cleaner Production, 140(2), 945–963. https://doi.org/10.1016/j.jclepro.2016.07.012.

    CAS  Article  Google Scholar 

  • Comissão de Fertilidade do Solo do Estado de Minas Gerais – CFSEMG. (1999). Recomendações para o uso de corretivos e fertilizantes em Minas Gerais. 5ª Aproximação. Viçosa. 359 p.

  • Corey, R. B., King, L. D., Lue-Hing, C., Fanning, D. S., Street, J. J., & Walker, J. M. (2018). Effects of sludge properties on accumulation of trace elements by crops. Chapter 3. In A. L. Page (Ed.), Land application of sludge. Ed.1st. Boca Raton: Edition eBook published.

    Google Scholar 

  • Cuske, M., Karczewska, A., & Gałka, B. (2017). Speciation of Cu, Zn, and Pb in soil solutions extracted from strongly polluted soils treated with organic materials. Polish Journal of Environmental Studies, 26(2), 567–575. https://doi.org/10.15244/pjoes/66710.

    CAS  Article  Google Scholar 

  • Delibacak, S., & Ongun, A. R. (2016). Influence of treated sewage sludge applications on corn and second crop wheat yield and some soil properties of sandy loam soil. Turk J Field Crops, 21(1), 1–9. https://doi.org/10.17557/tjfc.88475.

    Article  Google Scholar 

  • Fang, W., Qi, G., Wei, Y., Kosson, D. S., van der Sloot, H. A., & Liu, J. (2018). Leaching characteristic of toxic trace elements in soils amended by sewage sludge compost: a comparison of field and laboratory investigations. Environmental Pollution, 237, 244–252. https://doi.org/10.1016/j.envpol.2018.02.032.

    CAS  Article  Google Scholar 

  • Feizi, M., Jalali, M., & Renella, G. (2019). Assessment of nutrient and heavy metal content and speciation in sewage sludge from different locations in Iran. Natural Hazards, 95(3), 657–675. https://doi.org/10.1007/s11069-018-3513-7.

    Article  Google Scholar 

  • Florentino, A. L., Ferraz, A. V., Gonçalves, J. L. M., Asensio, V., Muraoka, T., Dias, C. T. S., Nogueira, T. A. R., Capra, G. F., & Abreu-Junior, C. H. (2019). Long-term effects of residual sewage sludge application in tropical soils under Eucalyptus plantations. Journal of Cleaner Production, 220, 177–187. https://doi.org/10.1016/j.jclepro.2019.02.065.

    CAS  Article  Google Scholar 

  • Gustafsson, J. P. (2011). Visual MINTEQ. Accessed 10 August (2011).

  • Hallas, J. F., Mackowiak, C. L., Wilkie, A. C., & Harris, W. G. (2019). Struvite phosphorus recovery from eerobically digested municipal wastewater. Sustainability, 11(2), 376. https://doi.org/10.3390/su11020376.

    Article  Google Scholar 

  • Hamdi, H., Hechmi, S., Khelil, M. N., Zoghlami, I. R., Benzart, S., Mokni-Tlili, S., Hassen, A., & Jedidi, N. (2019). Repetitive land application of urban sewage sludge: effect of amendment rates and soil texture on fertility and degradation parameters. Catena, 172, 11–20. https://doi.org/10.1016/j.catena.2018.08.015.

    CAS  Article  Google Scholar 

  • Kacprzak, M., Neczaj, E., Fijałkowski, K., Grobelak, A., Grosser, A., Worwag, M., Rorat, A., Brattebo, H., Almås, Å., & Singh, B. R. (2017). Sewage sludge disposal strategies for sustainable development. Environmental Research, 156, 39–46. https://doi.org/10.1016/j.envres.2017.03.010.

    CAS  Article  Google Scholar 

  • Kim, H. S., Kim, K. R., Kim, H. J., Yoon, J. H., Yang, J. E., Ok, Y. S., Owens, G., & Kim, K. H. (2015). Effect of biochar on heavy metal immobilization and uptake by lettuce (Lactuca sativa L.) in agricultural soil. Environmental Earth Science, 74, 1249–1259. https://doi.org/10.1007/s12665-015-4116-1.

    CAS  Article  Google Scholar 

  • Kirchmann, H., Börjesson, G., Kätterer, T., & Cohen, Y. (2017). From agricultural use of sewage sludge to nutrient extraction: a soil science outlook. Ambio, 46(2), 143–154. https://doi.org/10.1007/s13280-016-0816-3.

    CAS  Article  Google Scholar 

  • Lamastra, L., Suciu, N. A., & Trevisan, M. (2018). Sewage sludge for sustainable agriculture: contaminants’ contents and potential use as fertilizer. Chemical and Biological Technologies in Agriculture, 5(10). https://doi.org/10.1186/s40538-018-0122-3.

  • Li, M., Liu, J., Xu, Y., & Qian, G. (2016). Phosphate adsorption on metal oxides and metal hydroxides: a comparative review. Environmental Reviews, 24(3), 319–332. https://doi.org/10.1139/er-2015-0080.

    CAS  Article  Google Scholar 

  • Maia, F. C. V., Lima, S. O., Benício, L. P. F., Freitas, G. A. de, & Furlan, J. C. (2018). Physical quality of soil after the application of sewage sludge. Nativa, Sinop, 6(4), 345–351, Pesquisas Agrárias e Ambientais, https://doi.org/10.31413/nativa.v6i4.5088

    Article  Google Scholar 

  • McBride, M. B. (1994). Environmental chemistry of soils (416 pp). New York: Oxford University Press.

    Google Scholar 

  • Melo, W. J., Melo, G. M. P., Melo, V. P., Donha, R. M. A., & Delarica, D. L. D. (2018). Nitrogen dynamic in agricultural soils amended with sewage sludge. In Soil management and climate change. Effects on organic carbon, nitrogen dynamics, and greenhouse gas emissions. Chapter 13 (pp. 189–205). https://doi.org/10.1016/B978-0-12-812128-3.00013-6.

    Chapter  Google Scholar 

  • Mujdeci, M., Simsek, S., & Uygur, V. (2017). The effects of organic amendments on soil water retention characteristics under conventional tillage system. Fresenius Environmental Bullet, 26(6), 4075–4081.

    CAS  Google Scholar 

  • Palmer, S. M., Clark, J. M., Chapman, P. J., van der Heijden, G. M. F., & Bottrell, S. H. (2013). Effects of acid sulphate on DOC release in mineral soils: the influence of SO4 2− retention and Al release. European Journal of Soil Science, 64(4), 537–544. https://doi.org/10.1111/ejss.12048.

    CAS  Article  Google Scholar 

  • Pérez-Gimeno, A., Navarro-Pedreño, J., Almendro-Candel, M. B., Gómez, I., & Jordán, M. M. (2016). Environmental consequences of the use of sewage sludge compost and limestone outcrop residue for soil restoration: salinity and trace elements pollution. Journal of Soils and Sediments: protection, risk assessment and remediation, 16(3), 1012–1021. https://doi.org/10.1007/s11368-015-1288-y.

    CAS  Article  Google Scholar 

  • Regkouzas, P., & Diamadopoulos, E. (2019). Adsorption of selected organic micro-pollutants on sewage sludge biochar. Chemosphere, 224, 840–851. https://doi.org/10.1016/j.chemosphere.2019.02.165.

    CAS  Article  Google Scholar 

  • Schlatter, D. C., Paul, N. C., Shah, D. H., Schillinger, W. F., Bary, A. I., Sharratt, B., & Paulitz, T. C. (2019). Biosolids and tillage practices influence soil bacterial communities in dryland wheat. Microbial Ecology, 1–16. https://doi.org/10.1007/s00248-019-01339-1.

    CAS  Article  Google Scholar 

  • Seo, B., Kim, H. S., Kwon, S., Owens, G., & Kim, K. (2019). Heavy metal accumulation and mobility in a soil profile depend on the organic waste type applied. Journal of Soils and Sediments, 19(2), 822–829. https://doi.org/10.1007/s11368-018-2065-5.

    CAS  Article  Google Scholar 

  • Silva, F. C., Abreu, M. F., Pérez, D. V., Eira, P. A., Abreu, C. A., Van Raij, B., Gianello, C., Coelho, A. M., Quaggio, J. A., Tedesco, M. J., Silva, C. A., Cantarella, H., & Barreto, W. O. (2009). Métodos de análises químicas para avaliação da fertilidade do solo. In F. C. Silva (Ed.), Manual de análises químicas de solos, plantas e fertilizantes. Brasília: Embrapa Informação Tecnológica (627 p) (Portuguese).

    Google Scholar 

  • Thayalakumaran, T., Lenahan, M. J., & Bristow, K. L. (2015). Dissolved organic carbon in groundwater overlain by irrigated sugarcane. Groundwater, 53(4), 525–530. https://doi.org/10.1111/gwat.12258.

    CAS  Article  Google Scholar 

  • Torri, S. I., & Cabrera, M. N. (2017). The environmental impact of biosolids land application. In M. Collins (Ed.), Organic waste: management strategies, environmental impact and emerging regulations (pp. 185–208). Hauppauge: Nova Science Publishers, Inc.

    Google Scholar 

  • Trannin, I. C. B., Siqueira, J. O., & Moreira, F. M. S. (2005). Agronomic assessment of an industrial biosolid for corn crop. Pesquisa Agropecuária Brasileira, 40(3), 261–269. https://doi.org/10.1590/S0100-204X2005000300010.

    Article  Google Scholar 

  • United States Environmental Protection Agency – USEPA. (1995). A guide to the biosolids risk assessments for the EPA part 503 rule. EPA/832-B-93-005. Washington, DC.

  • United States Environmental Protection Agency – USEPA. (2018). EPA unable to assess the impact of hundreds of unregulated pollutants in land-applied biosolids on human health and the environment. Report n. 19-P-0002. 60p.

  • Weil, R. R., & Brady, N. C. (2016). Nitrogen and sulfur economy of soils. In R. R. Weil & N. C. Brady (Eds.), The nature and properties of soils. Chapter 13. 15 th ed. Pearson. https://doi.org/10.13140/RG.2.1.1435.0482.

  • Yang, K., Zhang, T., Shao, Y., Tian, Chao., Cattle, S. R., Zhu, Y., & Song, J. (2018). Fractionation, bioaccessibility, and risk assessment of heavy metals in the soil of an urban recreational area amended with composted sewage sludge. International Journal of Environmental Research and Public Health, 15(4), 613. https://doi.org/10.3390/ijerph15040613

    Article  Google Scholar 

  • Yutong, Z., Qing, X., & Shenggao, L. (2016). Chemical fraction, leachability, and bioaccessibility of heavy metals in contaminated soils, Northeast China. Environmental Science and Pollution Research International, 23(23), 24107–24114. https://doi.org/10.1007/s11356-016-7598-9.

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Guirado Artur.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Trannin, I.C.d., Artur, A.G., Siqueira, J.O. et al. Ionic speciation and risks associated with agricultural use of industrial biosolid applied in Inceptisol. Environ Monit Assess 191, 449 (2019). https://doi.org/10.1007/s10661-019-7565-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7565-2

Keywords

  • Chemical species
  • Leaching
  • Organic residues
  • Pollution