Abstract
Lake Cajititlán is an endorheic tropical lake located in the state of Jalisco, Mexico, which has suffered the consequences of high levels of eutrophication. This study assessed the presence of heavy metals and metalloids in Lake Cajititlán to ascertain possible risks to its aquatic biota and the environment. Eleven monitoring sites were selected throughout the lake; from each site, one sample was taken from the sediments and another from the sediment-water interface by using an Ekman dredger and a Van Dorn bottle, respectively. The measured metals in each sample were As, Cd, Cr, Hg, Pb, Zn, Cu, Ni, Fe, Mn, and Al. The results showed the following sequence of heavy metal concentrations Al > Fe > Mn > Zn > Cu > Cr, wherein Al had the highest average concentration and Cr had the lowest. As, Cd, Hg, and Pb were practically undetectable. Because the predominant rock in the lake basin is volcanic tuff and the soil is vertisol, the high quantities of Al and Fe suggest the weathering of the basin’s minerals. The analyses of the sediment-water samples contained small amounts of dissolved Al, Fe, and Mn. According to the Håkanson equations with Hg, Cd, As, Cu, Pb, Cr, and Zn, the calculations of the contamination degree and ecological risk revealed that the presence of metals and metalloids does not present a potential risk to the aquatic biota; nonetheless, the water is not suitable for local human consumption due to an unrelated factor associated with nutrient and bacteriological contamination. The results show that heavy metals in the sediments were dispersed throughout the lake mostly because of the weathering of minerals from the local basin and not because of the punctual discharges of the pollutants from the municipal wastewater treatment plants (WWTPs). However, to ensure that the small amounts of dissolved metals (Al, Fe, and Mn) do not affect the aquatic biota, the fish species and phytoplankton need to be internally analyzed.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
Polychlorinated biphenyl (PCB) is a product of the industrial era and the reference value should be zero. Håkanson (1980) decided to use the value of 0.01 as the “upper limit” to get an appropriate correspondence between preindustrial reference values.
References
AMS. (2016). Ekman dredge. https://www.ams-samplers.com/ekman-dredge.html. Accessed 28 Nov 2018.
Badillo-Camacho, J., Murillo-Delgado, J. O., Barcelo-Quintal, I. D., Zarate del Valle, P. F., Orozco-Guareño, E., Lopez-Chuken, U. J., & Gomez-Salazar, S. (2016). Heavy metals speciation in sediments of a Mexican tropical lake. Revista Mexicana de Ingeniería Química, 15(2), 565–573.
Bradl, H. B. (Ed.). (2005). Heavy metals in the environment: origin, interaction and remediation. Interface science and technology. Volume 6. (p. 269). London: Elsevier / Academic Press.
CEA. (2013). Situación de la Laguna de Cajititlán. Comisión Estatal del Agua. Gobierno del Estado de Jalisco. México. https://www.jalisco.gob.mx/prensa/noticias/3678. Accessed 28 Nov 2018.
Davison, W. (1993). Iron and manganese in lakes. Earth-Science Reviews, 34(2), 119–163. https://doi.org/10.1016/0012-8252(93)90029-7.
de Anda, J., Díaz-Torres, J. J., Gradilla-Hernández, M. S., & de la Torre-Castro, L. M. (2019). Morphometric and water quality features of Lake Cajititlán, Mexico. Environmental Monitoring and Assessment, 191(2), 92. https://doi.org/10.1007/s10661-018-7163-8.
Devanesan, E., Gandhi, M. S., Selvapandiyan, M., Senthilkumar, G., & Ravisankar, R. (2017). Heavy metal and potential ecological risk assessment in sediments collected from Poombuhar to Karaikal coast of Tamilnadu using energy dispersive X-ray fluorescence (EDXRF) technique. Beni-Suef University Journal of Basic and Applied Sciences, 6(3), 285–292. https://doi.org/10.1016/j.bjbas.2017.04.011.
DOF. (1969). Modificación a la Norma Oficial Mexicana NOM-127-SSA1-1994, Salud ambiental. Agua para uso y consumo humano. Límites permisibles de calidad y tratamientos a que debe someterse el agua para su potabilización. http://www.dof.gob.mx/nota_detalle.php?codigo=2063863&fecha=31/12/1969. Accessed 28 Nov 2018.
DOF. (1997). Norma Oficial Mexicana NOM-001-ECOL-1996, Que establece los límites máximos permisibles de contaminantes en las descargas de aguas residuales en aguas y bienes nacionales. Secretaría de Medio Ambiente, Recursos Naturales y Pesca. México. http://dof.gob.mx/nota_detalle.php?codigo=4863829&fecha=06/01/1997. Accessed 28 Nov 2018.
DOF. (2003). Norma Oficial Mexicana NOM-004-SEMARNAT-2002, Protección ambiental. Lodos y biosólidos. Especificaciones y límites máximos permisibles de contaminantes para su aprovechamiento y disposición final. Secretaría de Medio Ambiente y Recursos Naturales, México. http://dof.gob.mx/nota_detalle.php?codigo=691939&fecha=15/08/2003. Accessed 5 Dec 2018.
Effendi, H., Kawaroe, M., Mursalin, & Lestaria, D. F. (2016). Ecological risk assessment of heavy metal pollution in sediment of Mahakam Delta, East Kalimantan. Procedia Environmental Sciences, 33, 574–582.
Ford, T., & Ryan, D. (1995). Toxic metals in aquatic ecosystems: a microbiological perspective. Environmental Health Perspectives, 103(Suppl. 1), 25–28.
Gensemer, R. W., & Playle, R. C. (1999). The bioavailability and toxicity of aluminum in aquatic environments. Critical Reviews in Environmental Science and Technology, 29(4), 315–450. https://doi.org/10.1080/10643389991259245.
Håkanson, L. (1980). An ecological risk index for aquatic pollution control a sedimentological approach. Water Research, 14, 975–1001. https://doi.org/10.1016/0043-1354(80)90143-8.
IIEG. (2018). Tlajomulco de Zúñiga. Diagnóstico Municipal. Instituto de Información Estadística y Geográfica. Gobierno del Estado de Jalisco. Zapopan, Jalisco, México. https://iieg.gob.mx/contenido/Municipios/TlajomulcodeZuniga.pdf. Accessed 23 Jan 2019.
INEGI. (2009). Prontuario de información geográfica municipal de los Estados Unidos Mexicanos. Tlajomulco de Zúñiga, Jalisco. Clave geoestadística 14097. Instituto Nacional de Estadística y Geografía. Aguascalientes, México. http://www3.inegi.org.mx/contenidos/app/mexicocifras/datos_geograficos/14/14097.pdf. Accessed 23 Jan 2019.
Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A, 374(2065), 1–16. https://doi.org/10.1098/rsta.2015.0202.
Komnitsas, K., Pyliotis, I., Zaharaki, D., & Manoutsoglou, E. (2015). Using various guidelines and approaches for the assessment of marine sediment quality. Environmental Forensics, 16(1), 109–116. https://doi.org/10.1080/15275922.2014.991006.
Li, R., Chai, M., Qiu, & Guo, G. Y. (2016). Distribution, fraction, and ecological assessment of heavy metals in sediment-plant system in mangrove forest, South China Sea. PLoS One, 11, 1–15. https://doi.org/10.1371/journal.pone.0147308.
Limón-Macias, J. G., Amescua-Cerda, J. J., & Bastidas B. (1983). Rehabilitation plan for Lake Cajititlán: an endangered shallow lake (pp. 69-72). In: Lake restoration, protection and management. Proceedings of the second annual conference. North American Lake Management Society. October 26-29. Vamcouver, British, Columbia. Whashington, D. C.: U. S. Environmental Protection Agency, 327 p.
Moore, J. W., & Ramamoorthy, S. (1984). Heavy metals in natural waters: applied monitoring and impact assessment. Springer Series on Environmental Management. (1st ed.p. 268). New York: Springer-Verlag New York Inc.
Pérez, N. A., Lima, E., Bosch, P., & Méndez-Vivar, J. (2014). Consolidating materials for the volcanic tuff in western Mexico. Journal of Cultural Heritage, 15(4), 352–358.
Ramamoorthy, S., & Rust, B. R. (1978). Heavy metal exchange processes in sediment-water systems. Environmental Geology, 2(3), 165–172. https://doi.org/10.1007/BF02430670.
Rangel-Peraza, J. G., de Anda, J., González-Farías, F. A., Rode, M., Sanhouse-García, A., & Bustos-Terrones, Y. A. (2015). Assessment of heavy metals in sediment of Aguamilpa Dam, Mexico. Environmental Monitoring and Assessment, 87(3), 134. https://doi.org/10.1007/s10661-015-4359-z.
Rosales-Hoz, L., Carranza-Edwards, A., & Lopez-Hernandez, M. (2000). Heavy metals in sediments of a large, turbid tropical lake affected by anthropogenic discharges. Environmental Geology, 39(3–4), 378–383.
Santschi, P., Höhener, P., Benoit, G., & Buchholtz-ten Brink, M. (1990). Chemical processes at the sediment-water interface. Marine Chemistry, 30, 269–315.
Singh, A. P., Srivastava, P. C., & Srivastava, P. (2008). Relationships of heavy metals in natural lake waters with physico-chemical characteristics of waters and different chemical fractions of metals in sediments. Water, Air, and Soil Pollution, 188(1–4), 181–193. https://doi.org/10.1007/s11270-007-9534-6.
Trujillo-Cárdenas, J. L., Saucedo-Torres, N. P., Zárate del Valle, P. F., Ríos-Donato, N., Mendizábal, E., & Gómez-Salazar, S. (2010). Speciation and sources of toxic metals in sediments of Lake Chapala, Mexico. Journal of the Mexican Chemical Society, 54(2), 79–87.
U.S. EPA. (1996). “Method 3050B: acid digestion of sediments, sludges, and soils,” Revision 2. Washington, DC. https://www.epa.gov/homeland-security-research/epa-method-3050b-acid-digestion-sediments-sludges-and-soils. Accessed 28 Nov 2018.
van de Wiel, H. J. (2003). Determination of elements by ICP-AES and ICP-MS. https://www.ecn.nl/docs/society/horizontal/hor_desk_19_icp.pdf. Accessed 28 Nov 2018.
WILDCO. (2017). Van Dorn bottle samplers. https://wildco.com/materials-used-in-wildco-van-dorn-bottles/. Accessed 5 Dec 2018.
Zantop, H. (1978). Geologic setting and genesis of iron oxides and manganese oxides in the San Francisco manganese deposit, Jalisco, Mexico. Economic Geology, 73(6), 1137–1149.
Zaw, M., & Chiswell, B. (1999). Iron and manganese dynamics in lake water. Water Research, 33(8), 1900–1910. https://doi.org/10.1016/S0043-1354(98)00360-1.
Zhang, C., Yu, Z. G., Zeng, G. M., Jiang, M., Yang, Z. Z., Cui, F., Zhu, M. Y., Shen, L. Q., & Hu, L. (2014). Effects of sediment geochemical properties on heavy metal bioavailability. Environment International, 73, 270–281. https://doi.org/10.1016/j.envint.2014.08.010.
Zhang, Y., Zhang, H., Zhang, Z., Liu, C., Sun, C., Zhang, W., & Marhaba, T. (2018). pH effect on heavy metal release from a polluted sediment. Journal of Chemistry, 7597640, 7. https://doi.org/10.1155/2018/7597640.
Acknowledgments
The authors acknowledge the Municipality of Tlajomulco de Zúñiga, Jalisco, for supporting the project titled “Monitoreo y Evaluación de los principales parámetros de calidad del agua de la Laguna de Cajititlán 108/DJRO/CGDA/GLS/230617.” The authors also acknowledge the “Escuela de Ingeniería y Ciencias del Tecnológico de Monterrey” and the “Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A. C.” for supplying the research time and administrative resources needed to accomplish this work.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
de Anda, J., Gradilla-Hernández, M.S., Díaz-Torres, O. et al. Assessment of heavy metals in the surface sediments and sediment-water interface of Lake Cajititlán, Mexico. Environ Monit Assess 191, 396 (2019). https://doi.org/10.1007/s10661-019-7524-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10661-019-7524-y