Skip to main content
Log in

Comparison of IDW, cokriging and ARMA for predicting spatiotemporal variability of soil salinity in a gravel–sand mulched jujube orchard

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Information about the spatiotemporal variability of soil salinity is important for managing salinization in gravel–sand mulched fields. We used inverse distance weighting (IDW) and cokriging to model the spatial variability of soil salinity from 2013 to 2016 and used an autoregressive moving-average (ARMA) model time series to analyze the temporal variability. The objectives of this paper are (a) to compare IDW and cokriging for predicting salinity in deep soil layers from surface data, thus finding a more appropriate method to model the spatial variability of soil salinity, and, using ARMA time series, (b) to identify one or a few sampling points, where soil salt content is the most temporally stable, to increase sampling efficiency or decrease cost and to estimate the overall soil salt content of a field. The IDW interpolation was more accurate than cokriging when using surface salt content to estimate the content in deep layers; so, we used IDW to interpolate the data and draw spatial distribution maps of salt content. Salinity in the 0–10 cm layer gradually decreased with the amount of gravel–sand mulching, from 1.02 to 0.7 g/kg over four years, and increased with depth. ARMA was accurate when using sample dates to predict soil salinity in the time series, and the model was more stable. The stability of the salt spatial patterns over time and along the soil profile allowed us to identify a location representative of the field-mean salt content, with mean relative error ranging between 0.56 and 2.19%. The monitoring of soil salt from a few observations is thus a valuable tool for practitioners and will aid the management of soil salt in gravel–sand-mulched fields in arid regions, with a range of potential applications beyond the framework of monitoring salinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baroni, G., Ortuani, B., Facchi, A., & Gandolfi, C. (2013). The role of vegetation and soil properties on the spatio-temporal variability of the surface soil moisture in a maize-cropped field. Journal of Hydrology, 489(3), 148–159.

    Article  Google Scholar 

  • Brocca, L., Moramarco, T., Melone, F., Wagner, W., Hasenauer, S., & Hahn, S. (2012). Assimilation of surface and root-zone ASCAT soil moisture products into rainfall-runoff modeling. IEEE Transactions on Geoscience and Remote Sensing, 50(7), 2542–2555.

    Article  Google Scholar 

  • Cemek, B., Güler, M., Kilic, K., Demir, Y., & Arslan, H. (2007). Assessment of spatial variability in some soil properties as related to soil salinity and alkalinity in Bafra plain in northern Turkey. Environmental Monitoring and Assessment, 124, 223–234.

    Article  Google Scholar 

  • Contreras-Cruzado, I., Infante-Izquierdo, M. D., Márquez-García, B., Hermoso-López, V., Polo, A., Nieva, F. J. J., Cartes-Barroso, J. B., Castillo, J. M., & Muñoz-Rodríguez, A. (2017). Relationships between spatio-temporal changes in the sedimentary environment and halophytes zonation in salt marshes. Geoderma, 305, 173–187.

    Article  Google Scholar 

  • Corwin, D. L., Lesch, S. M., Oster, J. D., & Kaffka, S. R. (2006). Monitoring management-induced spatiotemporal changes in soil quality through soil sampling directed by apparent electrical conductivity. Geoderma, 131(3–4), 369–387.

    Article  Google Scholar 

  • Douaoui, A. E. K., Nicolas, H., & Walter, C. (2006). Detecting salinity hazards within a semiarid context by means of combining soil and remote-sensing data. Geoderma, 134, 217–230.

    Article  Google Scholar 

  • Duncan, R. A., Bethune, M. G., Thayalakumaran, T., Christen, E. W., & Mcmahon, T. A. (2008). Management of salt mobilisation in the irrigated landscape—a review of selected irrigation regions. Journal of Hydrology, 351(1–2), 238–252.

    Article  Google Scholar 

  • Eldeiry, A. A., & Garcia, L. A. (2010). Comparison of ordinary kriging, regression kriging, and cokriging techniques to estimate soil salinity using Landsat images. Journal of Irrigation and Drainage Engineering, 136(6), 355–364.

    Article  Google Scholar 

  • Fan, Y., Weisberg, P. J., & Nowak, R. S. (2014). Spatio-temporal analysis of remotely-sensed forest mortality associated with road de-icing salts. Science of the Total Environment, 472(472C), 929–938.

    Article  CAS  Google Scholar 

  • Garten, C. T., Jr., Kang, S., Brice, D. J., Schadt, C. W., & Zhou, J. (2007). Variability in soil properties at different spatial scales (1 m-1 km) in a deciduous forest ecosystem. Soil Biology and Biochemistry, 39, 2621–2627.

    Article  CAS  Google Scholar 

  • González-Alcaraz, M. N., Jiménez-Cárceles, F. J., Álvarez, Y., & Álvarez-Rogel, J. (2014). Gradients of soil salinity and moisture, and plant distribution, in a Mediterranean semiarid saline watershed: a model of soil–plant relationships for contributing to the management. Catena, 115(3), 150–158.

    Article  Google Scholar 

  • Grunstra, M., & Van Auken, O. W. (2007). Using GIS to display complex soil salinity patterns in an inland salt marsh. Developments in Environmental Sciences, 5, 407–431.

    Article  CAS  Google Scholar 

  • Hamzehpour, N., & Bogaert, P. (2017). Improved spatiotemporal monitoring of soil salinity using filtered kriging with measurement errors: an application to the West Urmia Lake, Iran. Geoderma, 295, 22–33.

    Article  Google Scholar 

  • He, B., Cai, Y. L., Ran, W. R., Zhao, X. L., & Jiang, H. (2015). Spatiotemporal heterogeneity of soil salinity after the establishment of vegetation on a coastal saline field. Catena, 127(4), 129–134.

    Article  Google Scholar 

  • Hingerl, L., Kunstmann, H., Wagner, S., Mauder, M., Bliefernicht, J., & Rigon, R. (2016). Spatio-temporal variability of water and energy fluxes—a case study for a mesoscale catchment in pre-alpine environment. Hydrological Processes, 30(21), 3804–3823.

    Article  Google Scholar 

  • Huang, C. Y., & Xu, J. M. (2010). Soil science (third edition) [M]. Chinese agriculture.

  • Hussain, G., & Alshammary, S. F. (2008). Effect of water salinity on survival and growth of landscape trees in Saudi Arabia. Arid Land Research & Management, 22(4), 320–333.

    Article  CAS  Google Scholar 

  • Ibrahimi, M. K., Miyazaki, T., Nishimura, T., & Imoto, H. (2014). Contribution of shallow groundwater rapid fluctuation to soil salinization under arid and semiarid climate. Arabian Journal of Geosciences, 7(9), 3901–3911.

    Article  CAS  Google Scholar 

  • Ji, Q., & Yu, M. (2010). Study on parameters setting of ordinary cokriging interpretation to average annual temperature. Journal of Capital Normal University, 31(4), 81–87.

    CAS  Google Scholar 

  • Juan, P., Mateu, J., Jordan, M. M., Mataix-Solera, J., Meléndez-Pastor, I., & Navarro-Pedreño, J. (2011). Geostatistical methods to identify and map spatial variations of soil salinity. Journal of Geochemical Exploration, 108(1), 62–72.

    Article  CAS  Google Scholar 

  • Lei, Z. D., Yang, S. X., & Xie, S. C. (1988). Soil hydrodynamics. [M]. Beijing: Tsinghua University.

    Google Scholar 

  • Lesch, S. M., Rhoades, J. D., Lund, L. J., & Corwin, D. L. (1992). Mapping soil salinity using calibrated electromagnetic measurements. Soil Science Society of America Journal, 56, 540–548.

    Article  Google Scholar 

  • Li, X. Y. (2003). Gravel-sand mulch for soil and water conservation in the semiarid loess region of northwest China. Catena, 52(2), 105–127.

    Article  Google Scholar 

  • Li, X. Y., Gong, J. D., Gao, Q. Z., & Wei, X. H. (2000). Rainfall interception loss by pebble mulch in the semiarid region of China. Journal of Hydrology, 228(3), 165–173.

    Google Scholar 

  • Li, X. Y., Shi, P. J., Liu, L. Y., Gao, S. Y., Wang, X. S., & Cheng, L. S. (2005). Influence of pebble size and cover on rainfall interception by gravel mulch. Journal of Hydrology, 312, 70–78.

    Article  Google Scholar 

  • Li, Y., Shi, Z., Wu, C. F., Li, H., & Li, F. (2007). Improved prediction and reduction of sampling density for soil salinity by different geostatistical methods. Agricultural Sciences in China, 6(7), 832–841.

    Article  Google Scholar 

  • Li, H. Y., Marchant, B. P., & Webster, R. (2016). Modelling the electrical conductivity of soil in the Yangtze delta in three dimensions. Geoderma, 269, 119–125.

    Article  Google Scholar 

  • Liu, J. L., Ma, X. Y., Zhang, Z. H., & Fu, Q. (2014). Temporal stability of soil moisture in an orchard. Journal of Basic Science and Engineering, 22(4), 698–703.

    Google Scholar 

  • Lu, G. Y., & Wong, D. W. (2008). An adaptive inverse-distance weighting spatial interpolation technique. Computers & Geosciences, 34(9), 1044–1055.

    Article  Google Scholar 

  • Lü, H. S., Yu, Z. B., Horton, R., & Yang, C. G. (2013). Effect of gravel-sand mulch on soil water and temperature in the semiarid loess region of Northwest China. Journal of Hydrologic Engineering, 18(11), 1484–1494.

    Article  Google Scholar 

  • Mahmut, C., & Cevat, K. (2003). Spatial and temporal changes of soil salinity in a cotton field irrigated with low-quality water. Journal of Hydrology, 272, 238–249.

    Article  Google Scholar 

  • Nachshon, U., Ireson, A., Kamp, G. V. D., & Wheater, H. (2013). Sulfate salt dynamics in the glaciated plains of North America. Journal of Hydrology, 499, 188–199.

    Article  CAS  Google Scholar 

  • Nouwakpo, S. K., Weltz, M. A., McGwire, K. C., Williams, J. C., Osama, A. H., & Green, C. H. M. (2017). Insight into sediment transport processes on saline rangeland hillslopes using three-dimensional soil microtopography changes. Earth Surface Processes & Landforms, 42(4), 681–696.

    Article  Google Scholar 

  • Scudiero, E., Skaggs, T. H., & Corwin, D. L. (2016). Comparative regional-scale soil salinity assessment with near-ground apparent electrical conductivity and remote sensing canopy reflectance. Ecological Indicators, 70, 276–284.

    Article  Google Scholar 

  • Sonmez, S., Buyuktas, D., Okturen, F., & Citak, S. (2008). Assessment of different soil to water ratios (1:1, 1:2.5, 1:5) in soil salinity studies. Geoderma, 144(1), 361–369.

    Article  CAS  Google Scholar 

  • Tejedor, M., Jiménez, C., & Díaz, F. (2003). Volcanic materials as mulches for water conservation. Geoderma, 117(3), 283–295.

    Article  Google Scholar 

  • Tripathi, R., Nayak, A. K., Shahid, M., Raja, R., Panda, B. B., Mohanty, S., Kumar, A., Lal, B., Gautam, P., & Sahoo, R. N. (2015). Characterizing spatial variability of soil properties in salt affected coastal India using geostatistics and kriging. Arabian Journal of Geosciences, 8(12), 10693–10703.

    Article  Google Scholar 

  • Tunçay, T., Bayramin, İ., Atalay, F., & Ünver, İ. (2016). Assessment of inverse distance weighting (IDW) interpolation on spatial variability of selected soil properties in the Cukurova Plain. Tarim Bilimleri Dergisi-Journal of Agricultural Sciences, 22(3), 377–384.

    Article  Google Scholar 

  • Veeneklaas, R. M., Dijkema, K. S., Hecker, N., & Bakker, J. P. (2013). Spatio-temporal dynamics of the invasive plant species Elytrigia atherica on natural salt marshes. Applied Vegetation Science, 16(2), 205–216.

    Article  Google Scholar 

  • Visconti, F., Paz, J. M. D., & Rubio, J. L. (2010). What information does the electrical conductivity of soil water extracts of 1 to 5 ratio (w/v) provide for soil salinity assessment of agricultural irrigated lands? Geoderma, 154(3–4), 387–397.

    Article  CAS  Google Scholar 

  • Wang, X. P., Pan, Y. X., Zhang, Y. F., Dou, D. Q., Hu, R., & Zhang, H. (2013). Temporal stability analysis of surface and subsurface soil moisture for a transect in artificial revegetation desert area, China. Journal of Hydrology, 507(11), 100–109.

    Article  Google Scholar 

  • Wu, Y. K., Liu, G. M., Yang, J. S., She, S. P. (2013). Interpreting method of regional soil salinity 3D distribution based on inverse distance weighting. Transactions of the Chinese society of agricultural engineering, 29(3), 100-106.

  • Yu, S. H., Liu, J. T., Eneji, A. E., Liu, H. T., & Han, L. P. (2015). Spatial variability of soil salinity under subsurface drainage. Communications in Soil Science & Plant Analysis, 46(2), 259–270.

    Article  CAS  Google Scholar 

  • Zhao, Y., Peth, S., & Wang, X. Y. (2010). Controls of surface soil moisture spatial patterns and their temporal stability in a semi-arid steppe. Hydrological Processes, 24(18), 2507–2519.

    Article  Google Scholar 

  • Zhao, W. J., Cui, Z., Zhang, J. Y., & Jin, J. (2017a). Temporal stability and variability of soil-water content in a gravel-mulched field in northwestern China. Journal of Hydrology, 552, 249–257.

    Article  Google Scholar 

  • Zhao, W. J., Sheng, J., Li, Z. L., Ma, H., & Yu, P. (2017b). Spatial variability of soil salinity in a gravel-sand mulched jujube orchard at different scales. Journal of Irrigation and Drainage Engineering, 143(6), 04017009.

    Article  Google Scholar 

  • Zou, P., Yang, J. S., Fu, J. R., Liu, G. M., & Li, D. S. (2010). Artificial neural network and time series models for predicting soil salt and water content. Agricultural Water Management, 97(12), 2009–2019.

    Article  Google Scholar 

  • Zucco, G., Brocca, L., Moramacro, T., & Morbidelli, R. (2014). Influence of land use on soil moisture spatial-temporal variability and monitoring. Journal of Hydrology, 516(6), 193–199.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (51869010), the Longyuan Youth Innovation and Entrepreneurship Project, and the Hongliu discipline funding from Lanzhou University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenju Zhao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, W., Cao, T., Li, Z. et al. Comparison of IDW, cokriging and ARMA for predicting spatiotemporal variability of soil salinity in a gravel–sand mulched jujube orchard. Environ Monit Assess 191, 376 (2019). https://doi.org/10.1007/s10661-019-7499-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7499-8

Keywords

Navigation