Skip to main content
Log in

High-frequency measurements of gas ebullition in a Brazilian subtropical reservoir—identification of relevant triggers and seasonal patterns

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

A Correction to this article was published on 19 June 2019

This article has been updated

Abstract

Water bodies, either natural or constructed impoundments, are sources of methane to the atmosphere, in which ebullition is frequently mentioned to be the dominant pathway. Ebullition is a complex process that is spatially dependent on factors acting over large distances (atmospheric pressure changes, wind) and factors acting locally (sediment characteristics, gas production) and is temporally variable due to the parameters’ oscillation with time. Its quantification through measurements is still limited, as is the identification of production processes and triggers for ebullition. This research focused on obtaining high temporal resolution measurements of gas ebullition from a water supply reservoir located in Brazil, to compare its temporal variability with changes in reservoir conditions, and obtain insights on its spatial patterns. Three automated bubble traps were deployed in the reservoir and measured gas flux from February 2017 to March 2018. The time series data showed a large temporal variability in ebullition. Less intense fluxes occurred with higher frequency, and short-duration events made a larger contribution to the total amount of gas emitted. A strong seasonal variation was observed, in which the mean flux recorded during periods when the reservoir was stratified was 2–16 fold the bubbling rates recorded during colder months and mixed water column. In addition, high flux events were correlated with decreasing atmospheric pressure and increased wind intensities. Lastly, we show that the mean gas emission flux tends to be underestimated during short sampling periods (probability > 41% for sampling periods shorter than 10 days).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Change history

  • 19 June 2019

    The original version of this article unfortunately did not contain all information in Figure 3.

References

  • Algar, C. K., & Boudreau, B. P. (2009). Transient growth of an isolated bubble in muddy, fine-grained sediments. Geochimica et Cosmochimica Acta, 73, 2581–2591. https://doi.org/10.1016/j.gca.2009.02.008.

    Article  CAS  Google Scholar 

  • Algar, C. K., Boudreau, B. P., & Barry, M. A. (2011). Initial rise of bubbles in cohesive sediments by a process of viscoelastic fracture. Journal of Geophysical Research: Solid Earth, 116(4), 1–14. https://doi.org/10.1029/2010JB008133.

    Article  Google Scholar 

  • Anderson, A. L., Abegg, F., Hawkins, J. A., Duncan, M. E., & Lyons, A. P. (1998). Bubble populations and acoustic interaction with the gassy floor of Eckernforde Bay. Continental Shelf Research, 18, 1807–1838. https://doi.org/10.1016/S0278-4343(98)00059-4.

    Article  Google Scholar 

  • Baird, A. J., Beckwith, C. W., Waldron, S., & Waddington, J. M. (2004). Ebullition of methane-containing gas bubbles from near-surface Sphagnum peat. Geophysical Research Letters. https://doi.org/10.1029/2004GL021157.

  • Barros, N., Cole, J. J., Tranvik, L. J., Prairie, Y. T., Bastviken, D., Huszar, V. L. M., del Giorgio, P., & Roland, F. (2011). Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nature Geoscience, 4, 593–596. https://doi.org/10.1038/ngeo1211.

    Article  CAS  Google Scholar 

  • Bastviken, D., Cole, J. J., Pace, M. L., & Tranvik, L. (2004). Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate. Global Biogeochemical Cycles. https://doi.org/10.1029/2004GB002238.

  • Bastviken, D., Cole, J. J., Pace, M. L., & Van de-Bogert, M. C. (2008). Fates of methane from different lake habitats: Connecting whole-lake budgets and CH4 emissions. Journal of Geophysical Research: Biogeosciences. https://doi.org/10.1029/2007JG000608.

  • Beaulieu, J. J., McManus, M. G., & Nietch, C. T. (2016). Estimates of reservoir methane emissions based on a spatially balanced probabilistic-survey. Limnology and Oceanography, 61, S27–S40. https://doi.org/10.1002/lno.10284.

    Article  CAS  Google Scholar 

  • Bernardo, J. W. Y., Mannich, M., Hilgert, S., Fernandes, C. V. S., & Bleninger, T. (2017). A method for the assessment of long-term changes in carbon stock by construction of a hydropower reservoir. Ambio. https://doi.org/10.1007/s13280-016-0874-6.

  • Brasil. (2014). Emissões de gases de efeito estufa em reservatórios de centrais hidrelétricas. Rio de Janeiro: Ministério de Minas e Energia.

    Google Scholar 

  • Carneiro, C., Kelderman, P., & Irvine, K. (2016). Assessment of phosphorus sediment–water exchange through water and mass budget in Passaúna Reservoir (Paraná State, Brazil). Environmental Earth Sciences. https://doi.org/10.1007/s12665-016-5349-3.

  • Casper, P., Maberly, S. C., Hall, G. H., & Finlay, B. J. (2000). Fluxes of methane and carbon dioxide from a small productive lake to the atmosphere. Biogeochemistry, 49, 1–19. https://doi.org/10.1023/A:1006269900174.

    Article  CAS  Google Scholar 

  • Caviglione, J. H., Caramori, P. H., Kiihl, L. R. B., de Oliveira, D., Galdino, J., Pugsley, L., & Borrozzino, E. (2010). Cartas Climáticas do Paraná. Londrina. http://www.iapar.br/modules/conteudo/conteudo.php?conteudo=597. Accessed 19 July 2017.

  • Deemer, B. R., Harrison, J. A., Li, S., Beaulieu, J. J., Del Sontro, T., Barros, N., et al. (2016). Greenhouse gas emissions from reservoir water surfaces: A new global synthesis manuscript. In BioScience (Vol. 66, pp. 949–964). https://doi.org/10.1093/biosci/biw117.

    Chapter  Google Scholar 

  • Del Sontro, T. S. (2011). Quantifying methane emissions from reservoirs: From basin-scale to discrete analyses with a focus on ebullition dynamics. ETH Zurich (Thesis). Dübendorf: Department of Environmental Science & Eawag.

  • Del Sontro, T. S., McGinnis, D. F., Wehrli, B., & Ostrovsky, I. (2015). Size does matter: Importance of large bubbles and small-scale hot spots for methane transport. Environmental Science and Technology, 49, 1268–1276. https://doi.org/10.1021/es5054286.

    Article  CAS  Google Scholar 

  • Del Sontro, T. S., Boutet, L., St-Pierre, A., del Giorgio, P. A., & Prairie, Y. T. (2016). Methane ebullition and diffusion from northern ponds and lakes regulated by the interaction between temperature and system productivity. Limnology and Oceanography, 61, S62–S77. https://doi.org/10.1002/lno.10335.

    Article  CAS  Google Scholar 

  • dos Santos, M. A., Damázio, J. M., Rogério, J. P., Amorim, M. A., Medeiros, A. M., Abreu, J. L. S., Maceira, M. E. P., Melo, A. C., & Rosa, L. P. (2017). Estimates of GHG emissions by hydroelectric reservoirs: The Brazilian case. Energy, 133, 99–107. https://doi.org/10.1016/j.energy.2017.05.082.

    Article  Google Scholar 

  • Fearnside, P. M. (2005). Do hydroelectric dams mitigate global warming? The case of Brazil’s Curua-Una dam. Mitigation and Adaptation Strategies for Global Change, 10, 675–691.

    Article  Google Scholar 

  • Friedl, G., & Wüest, A. (2002). Disrupting biogeochemical cycles—consequences of damming. Aquatic Sciences-Research Across Boundaries, 64, 55–65.

    Article  CAS  Google Scholar 

  • Fuckner, M. A., Teixeira, A. L. F., & Soares, S. R. A. (2016). Atualização e complementação da base de dados nacionais de referência de massas d’água. National Water Agency (ANA). Technical note 74/2016/SPR.

  • Goldenfum, J. A. (2012). Challenges and solutions for assessing the impact of freshwater reservoirs on natural GHG emissions. Ecohydrology and Hydrobiology, 12, 115–122. https://doi.org/10.2478/v10104-012-0011-5.

    Article  CAS  Google Scholar 

  • Hilgert, S., Scapulatempo Fernandes, C. V., & Fuchs, S. (2019). Redistribution of methane emission hot spots under drawdown conditions. Science of the Total Environment, 646, 958–971. https://doi.org/10.1016/j.scitotenv.2018.07.338.

    Article  CAS  Google Scholar 

  • International Energy Agency. (2012). Hydropower and the environment: Managing the carbon balance in freshwater reservoirs. Guidelines for quantitative analysis of net GHG emissions from reservoirs. Volume 1: Measurement programs and data analysis. IEA Hydro Technical Report.

  • International Hydropower Association. (2010). GHG measurement guidelines for freshwater reservoirs. UNESCO/IHA. Goldenfum, J. A. (Ed.), The UNESCO/IHA Greenhouse gas emissions from freshwater reservoirs research project. London: International Hydropower Association (IHA).

  • Joyce, J., & Jewell, P. W. (2003). Physical controls on methane ebullition from reservoirs and lakes. Environmental and Engineering Geoscience, 9, 167–178. https://doi.org/10.2113/9.2.167.

    Article  Google Scholar 

  • Keller, M., & Stallard, R. F. (1994). Methane emission by bubbling from Gatun Lake, Panama. Journal of Geophysical Research, 99, 8307. https://doi.org/10.1029/92JD02170.

    Article  CAS  Google Scholar 

  • Knapik, H. G., Fernandes, C. V. S., do Prado, L. L., de Oliveira, C. M., Dall’Agnol, P., & Godoy, R. (2017). Avaliação quali-quantitativa na coluna d’água e no sedimento. In NoPa-SaWaMa: Innovative approaches for future sediment and water management in Brazil. Curitiba: SeWaMa. http://www.nopa-brasil.net/en/sewama.html. Accessed August 2018.

  • Lampert, W., & Sommer, U. (2007). Limnoecology: The ecology of lakes and streams (Second.). New York: Oxford University Press.

    Google Scholar 

  • Liu, L., Wilkinson, J., Koca, K., Buchmann, C., & Lorke, A. (2016). The role of sediment structure in gas bubble storage and release. Journal of Geophysical Research: Biogeosciences, 121, 1992–2005. https://doi.org/10.1002/2016JG003456.

    Article  Google Scholar 

  • Maavara, T., Parsons, C. T., Ridenour, C., Stojanovic, S., Dürr, H. H., Powley, H. R., & Van Cappellen, P. (2015). Global phosphorus retention by river damming. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.1511797112.

  • Maeck, A., Del Sontro, T. S., McGinnis, D. F., Fischer, H., Flury, S., Schmidt, M., et al. (2013). Sediment trapping by dams creates methane emission hot spots. Environmental Science and Technology, 47, 8130–8137. https://doi.org/10.1021/es4003907.

    Article  CAS  Google Scholar 

  • Maeck, A., Hofmann, H., & Lorke, A. (2014). Pumping methane out of aquatic sediments—ebullition forcing mechanisms in an impounded river. Biogeosciences, 11, 2925–2938. https://doi.org/10.5194/bg-11-2925-2014.

    Article  CAS  Google Scholar 

  • Mendonça, R., Müller, R. A., Clow, D., Verpoorter, C., Raymond, P., Tranvik, L. J., & Sobek, S. (2017). Organic carbon burial in global lakes and reservoirs. Nature Communications, 8, 1694. https://doi.org/10.1038/s41467-017-01789-6.

    Article  CAS  Google Scholar 

  • Ministério de Minas e Energia. (2015). Brazilian Energy Balalance-BEN 2015: Ano base 2014. Ministry of Mines and Energy. Empresa de Pesquisa Energética (EPE). Rio de Janeiro.

  • Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., et al. (2013). Anthropogenic and natural radiative forcing. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate change: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Natchimuthu, S., Sundgren, I., Galfalk, M., Klemedtsson, L., Crill, P., Danielsson, A., & Bastviken, D. (2016). Spatio-temporal variability of lake CH4 fluxes and its influence on annual whole lake emission estimates. Limnology and Oceanography, 61, S13–S26. https://doi.org/10.1002/lno.10222.

    Article  CAS  Google Scholar 

  • Prairie, Y. T., Alm, J., Beaulieu, J., Barros, N., Battin, T., Cole, J., del Giorgio, P., DelSontro, T., Guérin, F., Harby, A., Harrison, J., Mercier-Blais, S., Serça, D., Sobek, S., & Vachon, D. (2017). Greenhouse gas emissions from freshwater reservoirs: What does the atmosphere see? Ecosystems, 21, 1058–1071. https://doi.org/10.1007/s10021-017-0198-9.

    Article  CAS  Google Scholar 

  • Rohweder, J., Rogala, J., Johnson, B., Anderson, D., Clark, S., Chamberlin, F., et al. (2012). Application of wind fetch and wave models for habitat rehabilitation and enhancement projects—2012 update. https://www.umesc.usgs.gov/management/dss/wind_fetch_wave_models_2012update.html. Accessed August 2018.

  • Rosa, L. P., dos Santos, M. A., Gesteira, C., & Xavier, A. E. (2016). A model for the data extrapolation of greenhouse gas emissions in the Brazilian hydroelectric system. Environmental Research Letters. https://doi.org/10.1088/1748-9326/11/6/064012.

  • Rudd, J. W. M., Hecky, R. E., Harris, R., & Kelly, C. A. (1993). Are hydroelectric reservoirs significant sources of greenhouse gases. Ambio, 22(4), 246–248.

    Google Scholar 

  • Saville, T., Mcclendon, E. W., & Cochran, A. L. (1962). Freeboard allowances for waves in inland reservoirs. ASCE Journal of the Waterways and Harbors Division, 88(WW2), 93–124.

    Google Scholar 

  • Schumack, V. V., & Mannich, M. (2017). Variação transversal de metano dissolvido em um reservatório subtropical. Florianópolis: XXII Simpósio Brasileiro de Recursos Hídricos.

    Google Scholar 

  • SENECT. (2016). The automated bubble trap (ABT)—Continuous measurement of the gas bubble rate. http://www.senect.de/abt/. Accessed 2 May 2016.

  • Smith, L. K., Lewis, W. M., Chanton, J. P., Cronin, G., & Hamilton, S. K. (2000). Methane emissions from the Orinoco river floodplain, Venezuela. Biogeochemistry, 51, 113–140. https://doi.org/10.1023/a:1006443429909.

    Article  Google Scholar 

  • Sobek, S., Delsontro, T., Wongfun, N., & Wehrli, B. (2012). Extreme organic carbon burial fuels intense methane bubbling in a temperate reservoir. Geophysical Research Letters. https://doi.org/10.1029/2011GL050144.

  • Teodoru, C. R., Bastien, J., Bonneville, M. C., Del Giorgio, P. A., Demarty, M., Garneau, M., et al. (2012). The net carbon footprint of a newly created boreal hydroelectric reservoir. Global Biogeochemical Cycles. https://doi.org/10.1029/2011GB004187.

  • Varadharajan, C., & Hemond, H. F. (2012). Time-series analysis of high-resolution ebullition fluxes from a stratified, freshwater lake. Journal of Geophysical Research: Biogeosciences. https://doi.org/10.1029/2011JG001866.

  • Varadharajan, C., Hermosillo, R., & Hemond, H. F. (2010). A low-cost automated trap to measure bubbling gas fluxes. Limnology and Oceanography: Methods, 8, 363–375. https://doi.org/10.4319/lom.2010.8.363.

    Article  Google Scholar 

  • Vörösmarty, C. J., Meybeck, M., Fekete, B., Sharma, K., Green, P., & Syvitski, J. P. M. (2003). Anthropogenic sediment retention: Major global impact from registered river impoundments. Global and Planetary Change, 39, 169–190. https://doi.org/10.1016/S0921-8181(03)00023-7.

    Article  Google Scholar 

  • Wik, M., Crill, P. M., Varner, R. K., & Bastviken, D. (2013). Multiyear measurements of ebullitive methane flux from three subarctic lakes. Journal of Geophysical Research: Biogeosciences, 118, 1307–1321. https://doi.org/10.1002/jgrg.20103.

    Article  Google Scholar 

  • Wilkinson, J., Maeck, A., Alshboul, Z., & Lorke, A. (2015). Continuous seasonal river ebullition measurements linked to sediment methane formation. Environmental Science and Technology, 49, 13121–13129. https://doi.org/10.1021/acs.est.5b01525.

    Article  CAS  Google Scholar 

  • Wüest, A., & Lorke, A. (2003). Small-scale hydrodynamics in lakes. Annual Review of Fluid Mechanics, 35, 373–412. https://doi.org/10.1146/annurev.fluid.35.101101.161220.

    Article  Google Scholar 

  • Xavier, C. da F. (2005). Avaliação da influência do uso e ocupação do solo e de características geomorfológicas sobre a qualidade das águas de dois reservatórios da região metropolitana de Curitiba – Paraná. Universidade Federal do Paraná.

  • Xavier, C. da F., Wosiack, A. C., Dias, L. N., & Brunkow, R. F. (2009). Qualidade das águas: reservatórios do estado do Paraná 2005 a 2008. Curitiba. http://www.iap.pr.gov.br/arquivos/File/boletins/RELATORIO_AGUA/relatorio_RESERVATORIOS_2005_2008.pdf. Accessed 09 April 2018.

  • Yvon-Durocher, G., Allen, A. P., Bastviken, D., Conrad, R., Gudasz, C., St-Pierre, A., & …, del Giorgio, P. A. (2014). Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature, 507(7493), 488–91.

  • Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L., & Tockner, K. (2014). A global boom in hydropower dam construction. Aquatic Sciences, 77, 161–170. https://doi.org/10.1007/s00027-014-0377-0.

    Article  Google Scholar 

Download references

Acknowledgments

The authors kindly thank the SENECT company who developed the automated bubble traps providing the continuous support of the equipment; the Karlsruhe Institute of Technology (KIT) for providing the equipment and supporting the research; the Sanepar sanitation company which manages the Passaúna reservoir and allowed the study to be conducted in the reservoir; the Coordination for the Improvement of Higher Education Personnel (CAPES) and the National Council for Scientific and Technological Development (CNPq) for the financial support through a master scholarship; the DAAD for the funding NoPa-SeWaMa project (ID 57203877) for financial support to material and field campaigns; and the institutions Smart Energy-TecPar and Instituto das Águas do Paraná for making available the relevant data.

Funding

The research was funded by CAPES (Coordination for the Improvement of Higher Level Education Personnel-Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Project number: 99999.004966/2015-05), the DAAD (German Academic Exchange Service), and the GIZ (German Society for International Cooperation). Project title: SeWaMa: Innovative approaches for future sediment and water management in Brazil (ID 57203877), within the NoPA call pGCI 002/2015.

The main author (Lediane Marcon) received a CAPES scholarship for her master’s thesis Works. Her main supervisor, Tobias Bleninger, undertook the work also within the productivity stipend from CNPq (number: 8786885193878624, call: CNPq N° 12/2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lediane Marcon.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marcon, L., Bleninger, T., Männich, M. et al. High-frequency measurements of gas ebullition in a Brazilian subtropical reservoir—identification of relevant triggers and seasonal patterns. Environ Monit Assess 191, 357 (2019). https://doi.org/10.1007/s10661-019-7498-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7498-9

Keywords

Navigation