A national burden assessment of estimated pediatric asthma emergency department visits that may be attributed to elevated ozone levels associated with the presence of smoke

Abstract

Asthma is the most common pediatric disease in the USA. It has been consistently demonstrated that asthma symptoms are exacerbated by exposure to ozone. Ozone (O3) is a secondary pollutant produced when volatile organic compounds (VOCs) are oxidized in the atmosphere in the presence of nitrogen oxides (NOx). At ground level, elevated ozone is typically formed as a result of human activities. However, wildfires represent an additional source of ozone precursors. Recent evidence suggests that smoke can increase ozone concentrations. We estimated the number of excess asthma-related emergency department (ED) visits in children with asthma that may be attributed to elevated ozone associated with smoke (EOAS) in the USA. We conducted a quantitative burden assessment (BA) using a Monte Carlo approach to estimate the median number of excess pediatric asthma ED visits that may be attributed to EOAS among children with asthma in the continental USA between 2005 and 2014, as well as 95% confidence bounds (95% CB). We estimated that a median of 2403 (95% CB 235–5382) pediatric asthma ED visits could be attributed to EOAS exposure between 2005 and 2014 in the continental USA. Furthermore, the impact of EOAS on estimated asthma ED visits was greatest in the eastern half of the continental USA. We found a significant increase in pediatric asthma ED visits that may be attributed to exposure to EOAS. EOAS may have a measurable negative impact on children with asthma in the USA.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abatzoglou, J. T., & Kolden, C. A. (2011). Climate change in Western US deserts: potential for increased wildfire and invasive annual grasses. Rangeland Ecology & Management, 64, 471–478.

    Article  Google Scholar 

  2. Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., & Wennberg, P. O. (2011). Emission factors for open and domestic biomass burning for use in atmospheric models. Atmospheric Chemistry and Physics, 11, 4039–4072.

    CAS  Article  Google Scholar 

  3. Akinbami, L. J., Moorman, J. E., Bailey, C., Zahran, H. S., King, M., Johnson, C. A., & Liu, X. (2012). Trends in asthma prevalence, health care use, and mortality in the United States, 2001-2010. NCHS Data Brief 1–8.

  4. Akinbami, L. J., Moorman, J. E., Simon, A. E., & Schoendorf, K. C. (2014). Trends in racial disparities for asthma outcomes among children 0 to 17 years, 2001-2010. The Journal of Allergy and Clinical Immunology, 134, 547–553.e5.

    Article  Google Scholar 

  5. Akinbami, L. J., Simon, A. E., & Rossen, L. M. (2016). Changing trends in asthma prevalence among children. Pediatrics, 137, e20152354.

    Article  Google Scholar 

  6. Apte, J. S., Marshall, J. D., Cohen, A. J., & Brauer, M. (2015). Addressing global mortality from ambient PM 2.5. Environmental Science & Technology, 49, 8057–8066.

    CAS  Article  Google Scholar 

  7. Babin, S. M., Burkom, H. S., Holtry, R. S., Tabernero, N. R., Stokes, L. D., Davies-Cole, J. O., DeHaan, K., & Lee, D. H. (2007). Pediatric patient asthma-related emergency department visits and admissions in Washington, DC, from 2001–2004, and associations with air quality, socio-economic status and age group. Environmental Health, 6, 9.

    Article  Google Scholar 

  8. Barbero, R., Abatzoglou, J. T., Larkin, N. K., Kolden, C. A., & Stocks, B. (2015a). Climate change presents increased potential for very large fires in the contiguous United States. International Journal of Wildland Fire, 24, 892.

    Article  Google Scholar 

  9. Barbero, R., Abatzoglou, J. T., Kolden, C. A., Hegewisch, K. C., Larkin, N. K., & Podschwit, H. (2015b). Multi-scalar influence of weather and climate on very large-fires in the Eastern United States: weather, climate and very large-fires in the Eastern United States. International Journal of Climatology, 35, 2180–2186.

    Article  Google Scholar 

  10. Bell, M. L. (2004). Ozone and short-term mortality in 95 US urban communities, 1987-2000. JAMA, 292, 2372–2378.

    CAS  Article  Google Scholar 

  11. Bell, M. L., Dominici, F., & Samet, J. M. (2005). A meta-analysis of time-series studies of ozone and mortality with comparison to the national morbidity. Mortality, and Air Pollution Study: Epidemiology, 16, 436–445.

    Google Scholar 

  12. Brey, S. J., & Fischer, E. V. (2016). Smoke in the city: how often and where does smoke impact summertime ozone in the United States? Environmental Science & Technology, 50, 1288–1294.

    CAS  Article  Google Scholar 

  13. Centers for Disease Control. (2005). Behavioral Risk Factor Surveillance System Survey Data.

  14. Centers for Disease Control. (2012). National surveillance of asthma: United States, 2001–2010.

  15. Crutzen, P. J. (1970). The influence of nitrogen oxides on the atmospheric ozone content. Quarterly Journal of the Royal Meteorological Society, 96, 320–325.

    Article  Google Scholar 

  16. Dennison, P. E., Brewer, S. C., Arnold, J. D., & Moritz, M. A. (2014). Large wildfire trends in the western United States, 1984-2011. Geophysical Research Letters, 41, 2928–2933.

    Article  Google Scholar 

  17. Fann, N., Lamson, A. D., Anenberg, S. C., Wesson, K., Risley, D., & Hubbell, B. J. (2012). Estimating the national public health burden associated with exposure to ambient PM2.5 and ozone: U.S. public health burden of PM2.5 and ozone. Risk Analysis, 32, 81–95.

    Article  Google Scholar 

  18. Fried, J. S., Torn, M. S., & Mills, E. (2004). The impact of climate change on wildfire severity: a regional forecast for northern California. Climatic Change, 64, 169–191.

    Article  Google Scholar 

  19. Hubbell, B., Fann, N., & Levy, J. I. (2009). Methodological considerations in developing local-scale health impact assessments: balancing national, regional, and local data. Air Quality, Atmosphere and Health, 2, 99–110.

    Article  Google Scholar 

  20. Jaffe, D. A., & Wigder, N. L. (2012). Ozone production from wildfires: a critical review. Atmospheric Environment, 51, 1–10.

    CAS  Article  Google Scholar 

  21. Ji, M., Cohan, D. S., & Bell, M. L. (2011). Meta-analysis of the association between short-term exposure to ambient ozone and respiratory hospital admissions. Environmental Research Letters, 6, 024006.

    Article  Google Scholar 

  22. Kaynak, B., Hu, Y., Martin, R. V., Russell, A. G., Choi, Y., & Wang, Y. (2008). The effect of lightning NOx production on surface ozone in the continental United States. Atmospheric Chemistry and Physics, 8, 5151–5159.

    CAS  Article  Google Scholar 

  23. Kim, K.-H., Kabir, E., & Kabir, S. (2015). A review on the human health impact of airborne particulate matter. Environment International, 74, 136–143.

    CAS  Article  Google Scholar 

  24. Kim, S. W., Heckel, A.. McKeen, S. A., Frost, G. J., Hsie, E. Y., Trainer, M. K., Richter, A., Burrows, J. P., Peckham ,S. E., Grell, G. A. (2006). Satellite‐observed US power plant NOx emission reductions and their impact on air quality. Geophysical Research Letters, 33(22).

  25. Kioumourtzoglou, M.-A., Schwartz, J. D., Weisskopf, M. G., Melly, S. J., Wang, Y., Dominici, F., & Zanobetti, A. (2015). Long-term PM2.5 exposure and neurological hospital admissions in the northeastern United States. Environmental Health Perspectives, 124(1), 23–29.

  26. Koppman. (2007). Volatile organic compounds in the atmosphere. Oxford, Blackwell Pub.

  27. Lin, S., Liu, X., Le, L. H., & Hwang, S.-A. (2008). Chronic exposure to ambient ozone and asthma hospital admissions among children. Environmental Health Perspectives, 116, 1725–1730.

    CAS  Article  Google Scholar 

  28. Liu, J. C., Mickley, L. J., Sulprizio, M. P., Dominici, F., Yue, X., Ebisu, K., Anderson, G. B., Khan, R. F. A., Bravo, M. A., & Bell, M. L. (2016). Particulate air pollution from wildfires in the Western US under climate change. Climatic Change, 138, 655–666.

    CAS  Article  Google Scholar 

  29. Logan, J. A. (1985). Tropospheric ozone: seasonal behavior, trends, and anthropogenic influence. Journal of Geophysical Research-Atmospheres, 90, 10463–10482.

    Article  Google Scholar 

  30. Lumley, T. (2012). Rmeta.

  31. Mar, T. F., & Koenig, J. Q. (2009). Relationship between visits to emergency departments for asthma and ozone exposure in greater Seattle, Washington. Annals of Allergy, Asthma & Immunology, 103, 474–479.

    CAS  Article  Google Scholar 

  32. Marlon, J. R., Bartlein, P. J., Walsh, M. K., Harrison, S. P., Brown, K. J., Edwards, M. E., Higuera, P. E., Power, M. J., Anderson, R. S., Briles, C., Brunelle, A., Carcaillet, C., Daniels, M., Hu, F. S., Lavoie, M., Long, C., Minckley, T., Richard, P. J. H., Scott, A. C., Shafer, D. S., Tinner, W., Umbanhowar, C. E., Jr., & Whitlock, C. (2009). Wildfire responses to abrupt climate change in North America. Proceedings of the National Academy of Sciences, 106, 2519–2524.

    CAS  Article  Google Scholar 

  33. McGovern, C. M., Redmond, M., Arcoleo, K., & Stukus, D. R. (2017). A missed primary care appointment correlates with a subsequent emergency department visit among children with asthma. Journal of Asthma, 54, 977–982.

    Article  Google Scholar 

  34. Moorman, J. E., Zahran, H., Truman, B. I., Molla, M. T., & Centers for Disease Control and Prevention (CDC). (2011). Current asthma prevalence—United States, 2006-2008. MMWR Supplements, 60, 84–86.

    Google Scholar 

  35. National Asthma Education and Prevention Program, Expert Panel Report 3. (2007). Guidelines for the diagnosis and management of asthma. National Heart, Lung and Blood Institute. Available at: https://www.nhlbi.nih.gov/files/docs/guidelines/asthsumm.pdf. Accessed 11 April 2018

  36. National Center for Health Statistics. (2016). National Hospital Ambulatory Medical care Survey: 2013 Emergency Department Summary Tables. Available at: https://www.cdc.gov/nchs/data/ahcd/nhamcs_emergency/2013_ed_web_tables.pdf. Accessed 11 April 2018

  37. R Development Core Team. (2008). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  38. Sacks, J. D., Rappold, A. G., Davis, J. A., Jr., Richardson, D. B., Waller, A. E., & Luben, T. J. (2014). Influence of urbanicity and county characteristics on the association between ozone and asthma emergency department visits in North Carolina. Environmental Health Perspectives, 122, 506–512.

    CAS  Article  Google Scholar 

  39. Santurtún, A., González-Hidalgo, J. C., Sanchez-Lorenzo, A., & Zarrabeitia, M. T. (2015). Surface ozone concentration trends and its relationship with weather types in Spain (2001–2010). Atmospheric Environment, 101, 10–22.

    Article  Google Scholar 

  40. Sills, M. R., Ginde, A. A., Clark, S., & Camargo, C. A. (2010). Multicenter study of chronic asthma severity among emergency department patients with acute asthma. The Journal of Asthma, 47, 920–928.

    Article  Google Scholar 

  41. Silverman, R. A., & Ito, K. (2010). Age-related association of fine particles and ozone with severe acute asthma in New York City. The Journal of Allergy and Clinical Immunology, 125, 367–373.e5.

    CAS  Article  Google Scholar 

  42. Strickland, M. J., Darrow, L. A., Klein, M., Flanders, W. D., Sarnat, J. A., Waller, L. A., Sarnat, S. E., Mulholland, J. A., & Tolbert, P. E. (2010). Short-term associations between ambient air pollutants and pediatric asthma emergency department visits. American Journal of Respiratory and Critical Care Medicine, 182, 307–316.

    Article  Google Scholar 

  43. Subramanian, S. V., Jun, H.-J., Kawachi, I., & Wright, R. J. (2009). Contribution of race/ethnicity and country of origin to variations in lifetime reported asthma: evidence for a nativity advantage. American Journal of Public Health, 99, 690–697.

    CAS  Article  Google Scholar 

  44. U.S. Census (2010). Annual state resident population estimates for 5 race groups by age, sex, and Hispanic origin data.

  45. US Centers for Disease Control and Prevention (2016). Most recent asthma data: National Prevalence of Asthma Attacks. Available at: https://www.cdc.gov/asthma/most_recent_data.htm. Accessed 11 April 2018.

  46. U.S. Department of Health and Human Services. (2016). National hospital ambulatory medical care survey: 2013 emergency department summary tables.

  47. U.S. Environmental Protection Agency. (2013). 2013 Final report: integrated science assessment of ozone and related photochemical oxidants. Washington, DC: U.S. Environmental Protection Agency.

    Google Scholar 

  48. U.S. Environmental Protection Agency. (2014). Health risk and exposure assessment for ozone; final report. Research Triangle Park: U.S. Environmental Protection Agency.

    Google Scholar 

  49. U.S. Environmental Protection Agency. (2015). Regulatory impact analysis of the final revisions to the National Ambient Air Quality Standards for ground-level ozone. Research Triangle Park: U.S. Environmental Protection Agency.

    Google Scholar 

  50. U.S. Environmental Protection Agency. (2018). Green book: 8-hour ozone (2008) nonattainment area summary.

  51. Villeneuve, P. J., Chen, L., Rowe, B. H., & Coates, F. (2007). Outdoor air pollution and emergency department visits for asthma among children and adults: a case-crossover study in northern Alberta, Canada. Environmental Health, 6, 40.

    Article  Google Scholar 

  52. Westerling, A. L. (2006). Warming and earlier spring increase Western U.S. forest wildfire activity. Science, 313, 940–943.

    CAS  Article  Google Scholar 

  53. Westerling, A. L., & Bryant, B. P. (2008). Climate change and wildfire in California. Climatic Change, 87, 231–249.

    Article  Google Scholar 

  54. Wickham, H. (2009). Ggplot2: elegant graphics for data analysis. New York: Springer.

    Google Scholar 

  55. Zahran, H. S., Bailey, C. M., Damon, S. A., Garbe, P. L., & Breysse, P. N. (2018). Vital signs: asthma in children—United States, 2001–2016. MMWR. Morbidity and Mortality Weekly Report, 67, 149–155.

    Article  Google Scholar 

  56. Zhang, R., Tie, X., & Bond, D. W. (2003). Impacts of anthropogenic and natural NOx sources over the U.S. on tropospheric chemistry. Proceedings of the National Academy of Sciences, 100, 1505–1509.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Sheena E. Martenies for her constructive feedback on the analysis and manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sheryl Magzamen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Geospatial Technology in Environmental Health Applications

Electronic supplementary material

ESM 1

(DOCX 522 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pratt, J.R., Gan, R.W., Ford, B. et al. A national burden assessment of estimated pediatric asthma emergency department visits that may be attributed to elevated ozone levels associated with the presence of smoke. Environ Monit Assess 191, 269 (2019). https://doi.org/10.1007/s10661-019-7420-5

Download citation

Keywords

  • Ozone
  • Wildfires
  • Pediatric asthma
  • Burden assessment
  • Hazard mapping system