Advertisement

Heatwaves and hospitalizations due to hyperthermia in defined climate regions in the conterminous USA

  • Alexander Liss
  • Elena N. NaumovaEmail author
Article
Part of the following topical collections:
  1. Topical Collection on Geospatial Technology in Environmental Health Applications

Abstract

Heatwaves are one of the deadliest natural disasters that occur annually with thousands of people seeking medical attention. The spatio-temporal synchronization between peaks in disease manifestation and high temperature provides important insights into the seasonal timing of the heatwave and the response it may cause with respect to emergence, severity, and duration. The objectives of this study are to examine the association between hospitalizations due to heat stroke in older adults and heat in the United States (US) and explore synchronization with respect to heatwave sequence, time of arrival, and regional climate. Three large data sets were utilized: daily hospitalization records of the US elderly between 1991 and 2006, annual demographic summaries on Medicare beneficiaries maintained by the Centers for Medicare and Medicaid Services (CMS), and nationwide daily meteorological observations. We modeled seasonal fluctuations in health outcomes, such as the timing and intensity of the seasonal peak in hospitalizations using refined harmonic GLM for eight climatically similar regions. During the 16-year study period, there were 40,019 heat-related hospitalizations (HRH) in the conterminous  US. The rates of HRH varied substantially across eight climatic regions: with the highest rate of 7.05 cases per million residents observed in areas with temperate arid summers and winters (TaTa) and the lowest rate of 0.67—in areas with cold moderately dry summers and arid winters (CdCa), where summer temperatures are about  18.3 °C and 12.1 °C, respectively. We detected 400 heatwaves defined as any day when the night time temperature is above its 90th percentile for the current and previous nights. The first seasonal heatwave in a season resulted in 4274 hospitalizations over 342 heatwave-days: 34.3% of 12,442 hospitalizations occurred in 26% of 1308 heatwave-days. The relative risks of increased HRH associated with the first and second heatwaves were 10.4 (95%CI: 8.5; 12.3) and 11.4 (95%CI: 9.6; 13.3), respectively, indicating the disproportional effects of early heatwave arrivals. The seasonal spike in heat stroke hospitalizations in regions with relatively similar annual temperatures, e.g. in areas with temperate moderately dry summers and winters (TdTa: 12.8 °C) and (TaTa: 11.1 °C) ranged between 4.5 (95%CI: 3.3; 5.5) and 11.0 (95%CI: 8.2; 14.9) cases per million residents, respectively, indicating substantial regional differences. The differences in heat-related hospitalizations and response to heatwaves are substantial among older adults residing in different climate regions of the conterminous US. The disproportionally high response to the early seasonal heatwave deserves special attention, especially in the context of prevention and decision support frameworks.

Keywords

Heatwave Climate Extreme weather Elderly Health Seasonality Statistical model Decision support Data science 

Notes

Acknowledgments

Authors are thankful to three reviewers for thoughtful comments and suggestions and editorial help provided by Tania M. Alarcon-Falconi and Yuri N. Naumov. All statements of fact, opinion, or analysis expressed are those of the authors and do not reflect the official positions or views of the Intelligence Community or any other U.S. Government agency. Nothing in the contents should be construed as asserting or implying U.S. Government authentication of information or Intelligence Community endorsement of the author’s views.

Funding information

The hospitalization records were acquired from the Centers for Medicare and Medicaid Services (CMS) in part through the project “Gastroenteritis and Extreme Weather Events in Elderly-GEWEL” (NIEHS-R01ES013171) funded by the National Institute of Environmental Health Sciences. This study was in part supported by a grant from the Intelligence Community Research Fellowship Program.

Supplementary material

10661_2019_7412_MOESM1_ESM.docx (18 kb)
Supplementary Table 1 (DOCX 17 kb)
10661_2019_7412_MOESM2_ESM.docx (110 kb)
Supplementary Table 2 (DOCX 109 kb)
10661_2019_7412_MOESM3_ESM.docx (15 kb)
Supplementary Table 3 (DOCX 14 kb)
10661_2019_7412_MOESM4_ESM.docx (123 kb)
Supplementary Table 4 (DOCX 122 kb)
10661_2019_7412_MOESM5_ESM.docx (74 kb)
Supplementary Table 5 (DOCX 73 kb)
10661_2019_7412_MOESM6_ESM.docx (38 kb)
Supplementary Table 6 (DOCX 38 kb)
10661_2019_7412_Fig3_ESM.png (2.3 mb)
Figure S1

Daily time series of heat-related hospitalization counts (black lines) and fitted model curves (yellow empty circle) in older adults for each of the eight LKN climate regions: CdCa (a), CwCd (b), HwHd (c), HwHw (d), TaTa (e), TdTa (f), TwCd (g), TwTw (h). (PNG 2327 kb)

10661_2019_7412_MOESM7_ESM.eps (8.4 mb)
High resolution image (EPS 8619 kb)
10661_2019_7412_MOESM8_ESM.docx (24 kb)
ESM 1 (DOCX 23 kb)

References

  1. Anderson, G. B., & Bell, M. L. (2011). Heat waves in the United States: Mortality risk during heat waves and effect modification by heat wave characteristics in 43 U.S. communities. Environmental Health Perspectives, 119(2), 210–218.  https://doi.org/10.1289/ehp.1002313.CrossRefGoogle Scholar
  2. Arias, E. (2015). United States life tables, 2011. National Vital Statistics Reports, 64(11), 1–63.Google Scholar
  3. Astrom, D. O., Forsberg, B., & Rocklov, J. (2011). Heat wave impact on morbidity and mortality in the elderly population: A review of recent studies. Maturitas, 69(2), 99–105.  https://doi.org/10.1016/j.maturitas.2011.03.008.CrossRefGoogle Scholar
  4. Aubrecht, C., Steinnocher, K., Köstl, M., Züger, J., & Loibl, W. (2013). Long-term spatio-temporal social vulnerability variation considering health-related climate change parameters particularly affecting elderly. Natural Hazards, 68(3), 1371–1384.  https://doi.org/10.1007/s11069-012-0324-0.CrossRefGoogle Scholar
  5. Baccini, M., Biggeri, A., Accetta, G., Kosatsky, T., Katsouyanni, K., Analitis, A., Anderson, H. R., Bisanti, L., DʼIppoliti, D., Danova, J., Forsberg, B., Medina, S., Paldy, A., Rabczenko, D., Schindler, C., & Michelozzi, P. (2008). Heat effects on mortality in 15 European cities. Epidemiology, 19(5), 711–719.  https://doi.org/10.1097/EDE.0b013e318176bfcd.CrossRefGoogle Scholar
  6. Barriopedro, D., Fischer, E. M., Luterbacher, J., Trigo, R. M., & Garcia-Herrera, R. (2011). The hot summer of 2010: Redrawing the temperature record map of Europe. Science, 332(6026), 220–224.  https://doi.org/10.1126/science.1201224.CrossRefGoogle Scholar
  7. Basu, R. (2009). High ambient temperature and mortality: A review of epidemiologic studies from 2001 to 2008. Environmental Health, 8, 40.  https://doi.org/10.1186/1476-069X-8-40.CrossRefGoogle Scholar
  8. Basu, R., & Samet, J. M. (2002). Relation between elevated ambient temperature and mortality: A review of the epidemiologic evidence. Epidemiologic Reviews, 24(2), 190–202.CrossRefGoogle Scholar
  9. Black, E., Blackburn, M., Harrison, G., Hoskins, B., & Methven, J. (2004). Factors contributing to the summer 2003 European heatwave. Weather, 59(8), 217–223.  https://doi.org/10.1256/wea.74.04.CrossRefGoogle Scholar
  10. Chebana, F., Martel, B., Gosselin, P., Giroux, J.-X., & Ouarda, T. B. M. J. (2013). A general and flexible methodology to define thresholds for heat health watch and warning systems, applied to the province of Québec (Canada). International Journal of Biometeorology, 57(4), 631–644.  https://doi.org/10.1007/s00484-012-0590-2.CrossRefGoogle Scholar
  11. Chui, K. K., Cohen, S. A., & Naumova, E. N. (2011a). Snowbirds and infection--new phenomena in pneumonia and influenza hospitalizations from winter migration of older adults: A spatiotemporal analysis. BMC Public Health, 11, 444.  https://doi.org/10.1186/1471-2458-11-444.CrossRefGoogle Scholar
  12. Chui, K. K., Jagai, J. S., Griffiths, J. K., & Naumova, E. N. (2011b). Hospitalization of the elderly in the United States for nonspecific gastrointestinal diseases: A search for etiological clues. American Journal of Public Health, 101(11), 2082–2086.  https://doi.org/10.2105/AJPH.2010.300096.CrossRefGoogle Scholar
  13. Chung, Y., Lim, Y. H., Honda, Y., Guo, Y. L., Hashizume, M., Bell, M. L., et al. (2015). Mortality related to extreme temperature for 15 cities in Northeast Asia. Epidemiology, 26(2), 255–262.  https://doi.org/10.1097/EDE.0000000000000229.CrossRefGoogle Scholar
  14. Cohen, S. A., & Naumova, E. N. (2007). Population dynamics in the elderly: The need for age-adjustment in national BioSurveillance systems. In D. Zeng, I. Gotham, K. Komatsu, C. Lynch, M. Thurmond, D. Madigan, et al. (Eds.), Intelligence and security informatics: Biosurveillance: Second NSF workshop, BioSurveillance 2007, New Brunswick, NJ, USA, may 22, 2007. Proceedings (pp. 47–58). Berlin, Heidelberg: Springer Berlin Heidelberg.CrossRefGoogle Scholar
  15. Deschenes, O. (2014). Temperature, human health, and adaptation. Energy Economics, 46(0), 606–619.  https://doi.org/10.1016/j.eneco.2013.10.013.CrossRefGoogle Scholar
  16. Deschênes, O., & Moretti, M. (2009). Extreme weather events, mortality, and migration. The Review of Economics and Statistics, 91(4), 659–681.  https://doi.org/10.1162/rest.91.4.659.CrossRefGoogle Scholar
  17. D'Ippoliti, D., Michelozzi, P., Marino, C., de'Donato, F., Menne, B., Katsouyanni, K., Kirchmayer, U., Analitis, A., Medina-Ramón, M., Paldy, A., Atkinson, R., Kovats, S., Bisanti, L., Schneider, A., Lefranc, A., Iñiguez, C., & Perucci, C. A. (2010). The impact of heat waves on mortality in 9 European cities: Results from the EuroHEAT project. Environmental Health, 9, 37.  https://doi.org/10.1186/1476-069X-9-37.CrossRefGoogle Scholar
  18. Ebi, K. L., & Mills, D. (2013). Winter mortality in a warming climate: A reassessment. Wiley Interdisciplinary Reviews: Climate Change, 4(3), 203–212.  https://doi.org/10.1093/aje/kwn266.CrossRefGoogle Scholar
  19. Gamble, J. L., Hurley, B. J., Schultz, P. A., Jaglom, W. S., Krishnan, N., & Harris, M. (2013). Climate change and older Americans: State of the science. Environmental Health Perspectives, 121(1), 15–22.  https://doi.org/10.1289/ehp.1205223.CrossRefGoogle Scholar
  20. Gao, J., Sun, Y., Liu, Q., Zhou, M., Lu, Y., & Li, L. (2015). Impact of extreme high temperature on mortality and regional level definition of heat wave: A multi-city study in China. Science of the Total Environment, 505(Supplement C), 535–544.  https://doi.org/10.1016/j.scitotenv.2014.10.028.CrossRefGoogle Scholar
  21. Goldie, J., Alexander, L., Lewis, S. C., Sherwood, S. C., & Bambrick, H. (2017). Changes in relative fit of human heat stress indices to cardiovascular, respiratory, and renal hospitalizations across five Australian urban populations. International Journal of Biometeorology, 62, 423–432.  https://doi.org/10.1007/s00484-017-1451-9.CrossRefGoogle Scholar
  22. Hajat, S., O'Connor, M., & Kosatsky, T. (2010). Health effects of hot weather: From awareness of risk factors to effective health protection. Lancet, 375(9717), 856–863.  https://doi.org/10.1016/S0140-6736(09)61711-6.CrossRefGoogle Scholar
  23. Jagai, J. S., Griffiths, J. K., Kirshen, P. K., Webb, P., & Naumova, E. N. (2012). Seasonal patterns of gastrointestinal illness and streamflow along the Ohio River. International Journal of Environmental Research and Public Health, 9(5), 1771–1790.  https://doi.org/10.3390/ijerph9051771.CrossRefGoogle Scholar
  24. Johnson, D. P., Stanforth, A., Lulla, V., & Luber, G. E. (2012). Developing an applied extreme heat vulnerability index utilizing socioeconomic and environmental data. Applied Geography, 35(1–2), 23–31.  https://doi.org/10.1016/j.apgeog.2012.04.006.CrossRefGoogle Scholar
  25. Kalkstein, L. S., & Davis, R. E. (1989). Weather and human mortality: An evaluation of demographic and interregional responses in the United States. Annals of the Association of American Geographers, 79(1), 44–64.  https://doi.org/10.1111/j.1467-8306.1989.tb00249.x.CrossRefGoogle Scholar
  26. Kalkstein, L. S., & Greene, J. S. (1997). An evaluation of climate/mortality relationships in large U.S. cities and the possible impacts of a climate change. Environmental Health Perspectives, 105(1), 84–93.CrossRefGoogle Scholar
  27. Kent, S. T., McClure, L. A., Zaitchik, B. F., Smith, T. T., & Gohlke, J. M. (2014). Heat waves and health outcomes in Alabama (USA): The importance of heat wave definition. Environmental Health Perspectives, 122(2), 151–158.  https://doi.org/10.1289/ehp.1307262.CrossRefGoogle Scholar
  28. Kilbourne, E. M. (1999). The spectrum of illness during heat waves. American Journal of Preventive Medicine, 16(4), 359–360.CrossRefGoogle Scholar
  29. Lawrence, M. G. (2005). The relationship between relative humidity and the dewpoint temperature in moist air: A simple conversion and applications. Bulletin of the American Meteorological Society, 86(2), 225–233.  https://doi.org/10.1175/bams-86-2-225.CrossRefGoogle Scholar
  30. Leone, M., D'Ippoliti, D., De Sario, M., Analitis, A., Menne, B., Katsouyanni, K., et al. (2013). A time series study on the effects of heat on mortality and evaluation of heterogeneity into European and eastern-southern Mediterranean cities: Results of EU CIRCE project. Environmental Health, 12, 55.  https://doi.org/10.1186/1476-069X-12-55.CrossRefGoogle Scholar
  31. Li, M., Gu, S., Bi, P., Yang, J., & Liu, Q. (2015). Heat waves and morbidity: Current knowledge and further direction-a comprehensive literature review. International Journal of Environmental Research and Public Health, 12(5), 5256–5283.  https://doi.org/10.3390/ijerph120505256.CrossRefGoogle Scholar
  32. Liss, A., Koch, M., & Naumova, E. N. (2014). Redefining climate regions in the United States of America using satellite remote sensing and machine learning for public health applications. Geospatial Health, 8(3), S647–S659.  https://doi.org/10.4081/gh.2014.294.CrossRefGoogle Scholar
  33. Liss, A., Wu, R., Chui, K. K., & Naumova, E. N. (2017). Heat-related hospitalizations in older adults: An amplified effect of the first seasonal heatwave. Scientific Reports, 7, 39581.  https://doi.org/10.1038/srep39581.CrossRefGoogle Scholar
  34. Luber, G. E., Sanchez, C. A., & Conklin, L. (2006). Heat-related deaths--United States, 1999-2003. MMWR: Morbidity and Mortality Weekly Report, 55(29), 796–798.Google Scholar
  35. McGregor, G.R., Bessemoulin, P., Ebi, K., & Menne, B. (eds) (2015). Heatwaves and health: guidance on warning-system development (WMO-No. 1142). Resource document. World meteorological organization and world health organization. Geneva, Switzerland. ISBN 978-92-63-11142-5 http://www.who.int/globalchange/publications/WMO_WHO_Heat_Health_Guidance_2015.pdf. Accessed 17 April 2019.
  36. Miron, I. J., Criado-Alvarez, J. J., Diaz, J., Linares, C., Mayoral, S., & Montero, J. C. (2008). Time trends in minimum mortality temperatures in Castile-La Mancha (Central Spain): 1975–2003. International Journal of Biometeorology, 52(4), 291–299.  https://doi.org/10.1007/s00484-007-0123-6.CrossRefGoogle Scholar
  37. Montero, J. C., Mirón, I. J., Criado-Álvarez, J. J., Linares, C., & Díaz, J. (2012). Influence of local factors in the relationship between mortality and heat waves: Castile-La Mancha (1975–2003). Science of the Total Environment, 414(Supplement C), 73–80.  https://doi.org/10.1016/j.scitotenv.2011.10.009.CrossRefGoogle Scholar
  38. Nairn, J., Fawcett, R., & Ray, D. Defining and predicting Excessive Heat events, a National system. In A. J. Hollis (Ed.), Modelling and Understanding High Impact Weather’: extended abstracts of the third CAWCR Modelling Workshop, 30 November – 2 December 2009, Melbourne, 2009, CAWCR Technical Report No. 17, pp. 83–86.Google Scholar
  39. Naumova, E. N., & MacNeill, I. B. (2005). Signature-forecasting and early outbreak detection system. Environmetrics, 16(7), 749–766.CrossRefGoogle Scholar
  40. Naumova, E. N., & MacNeill, I. B. (2007). Seasonality assessment for biosurveillance systems. In J.-L. Auget, N. Balakrishnan, M. Mesbah, & G. Molenberghs (Eds.), Advances in Statistical Methods for the Health sciences: Applications to Cancer and AIDS studies, genome sequence analysis, and survival analysis (pp. 437–450). Boston, MA: Birkhäuser Boston.CrossRefGoogle Scholar
  41. Naumova, E. N., Jagai, J. S., Matyas, B., DeMaria, A., Jr., MacNeill, I. B., & Griffiths, J. K. (2007). Seasonality in six enterically transmitted diseases and ambient temperature. Epidemiology and Infection, 135(2), 281–292.  https://doi.org/10.1017/S0950268806006698.CrossRefGoogle Scholar
  42. Naumova, E. N., Parisi, S. M., Castronovo, D., Pandita, M., Wenger, J., & Minihan, P. (2009). Pneumonia and influenza hospitalizations in elderly people with dementia. Journal of the American Geriatrics Society, 57(12), 2192–2199.  https://doi.org/10.1111/j.1532-5415.2009.02565.x.CrossRefGoogle Scholar
  43. O'Neill, M. S., & Ebi, K. L. (2009). Temperature extremes and health: impacts of climate variability and change in the United States. Journal of Occupational and Environmental Medicine, 51(1), 13–25.  https://doi.org/10.1097/JOM.0b013e318173e122.CrossRefGoogle Scholar
  44. Pascal, M., Wagner, V., Le Tertre, A., Laaidi, K., Honoré, C., Bénichou, F., & Beaudeau, P. (2013). Definition of temperature thresholds: the example of the French heat wave warning system. International Journal of Biometeorology, 57 (1), 21–29.CrossRefGoogle Scholar
  45. Robine, J. M., Cheung, S. L., Le Roy, S., Van Oyen, H., Griffiths, C., Michel, J. P., et al. (2008). Death toll exceeded 70,000 in Europe during the summer of 2003. Comptes Rendus Biologies, 331(2), 171–178.  https://doi.org/10.1016/j.crvi.2007.12.001.CrossRefGoogle Scholar
  46. Schifano, P., Leone, M., De Sario, M., de'Donato, F., Bargagli, A. M., D'Ippoliti, D., et al. (2012). Changes in the effects of heat on mortality among the elderly from 1998-2010: Results from a multicenter time series study in Italy. Environmental Health, 11, 58.  https://doi.org/10.1186/1476-069X-11-58.CrossRefGoogle Scholar
  47. Sheridan, S. C., & Allen, M. J. (2018). Temporal trends in human vulnerability to excessive heat. Environmental Research Letters.  https://doi.org/10.1088/1748-9326/aab214.CrossRefGoogle Scholar
  48. Smith, T. T., Zaitchik, B. F., & Gohlke, J. M. (2013). Heat waves in the United States: Definitions, patterns and trends. Climatic Change, 118(3–4), 811–825.  https://doi.org/10.1007/s10584-012-0659-2.CrossRefGoogle Scholar
  49. Tong, S., Ren, C., & Becker, N. (2010). Excess deaths during the 2004 heatwave in Brisbane, Australia. International Journal of Biometeorology, 54(4), 393–400.  https://doi.org/10.1007/s00484-009-0290-8.CrossRefGoogle Scholar
  50. van Loenhout, J. A. F., Delbiso, T. D., Kiriliouk, A., Rodriguez-Llanes, J. M., Segers, J., & Guha-Sapir, D. (2018). Heat and emergency room admissions in the Netherlands. BMC Public Health, 18(1), 108.  https://doi.org/10.1186/s12889-017-5021-1.CrossRefGoogle Scholar
  51. Wenger, J. B., & Naumova, E. N. (2010). Seasonal synchronization of influenza in the United States older adult population. PLoS One, 5(4), e10187.  https://doi.org/10.1371/journal.pone.0010187.CrossRefGoogle Scholar
  52. White-Newsome, J. L., Ekwurzel, B., Baer-Schultz, M., Ebi, K. L., O'Neill, M. S., & Anderson, G. B. (2014). Survey of county-level heat preparedness and response to the 2011 summer heat in 30 U.S. states. Environmental Health Perspectives, 122(6), 573–579.  https://doi.org/10.1289/ehp.1306693.CrossRefGoogle Scholar
  53. Wu, W., Xiao, Y., Li, G., Zeng, W., Lin, H., Rutherford, S., Xu, Y., Luo, Y., Xu, X., Chu, C., & Ma, W. (2013). Temperature–mortality relationship in four subtropical Chinese cities: A time-series study using a distributed lag non-linear model. Science of the Total Environment, 449(Supplement C), 355–362.  https://doi.org/10.1016/j.scitotenv.2013.01.090.CrossRefGoogle Scholar
  54. Wu, J., Zhou, Y., Gao, Y., Fu, J. S., Johnson, B. A., Huang, C., Kim, Y. M., & Liu, Y. (2014). Estimation and uncertainty analysis of impacts of future heat waves on mortality in the eastern United States. Environmental Health Perspectives, 122(1), 10–16.  https://doi.org/10.1289/ehp.1306670.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringTufts University, School of EngineeringMedfordUSA
  2. 2.Friedman School of Nutrition Science and PolicyTufts UniversityBostonUSA
  3. 3.Initiative for the Forecasting and Modeling of Infectious DiseasesTufts UniversityMedfordUSA

Personalised recommendations