Skip to main content

Advertisement

Log in

Diurnal and seasonal patterns of soil CO2 efflux from the Pichavaram mangroves, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The diurnal and seasonal variation of soil carbon dioxide (CO2) flux was measured in the Pichavaram mangrove forest, the Southeast coast of India from February 2016 to October 2016 using an automated soil CO2 flux chamber system. Maximum soil CO2 efflux reached at 14:00 h and minimum at 00:00 h. The surface soil CO2 concentration ranged from 375 to 532 ppm with the mean 405 ± 18 ppm. The daily soil CO2 flux varied from near zero to about 7 μmol m−2 s−1 with a mean value of 2.4 ± 1.3 μmol m−2 s−1. The highest seasonal CO2 efflux from soil was during the summer and premonsoon seasons, whereas low flux values were recorded during the monsoon season. Soil CO2 efflux values were highly correlated with soil temperature. Tidal inundation during monsoon season, extreme drought condition in summer, and unusual precipitation are the major factors controlling the soil CO2 flux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alongi, D. M. (2014). Carbon cycling and storage in mangrove forests. Annual Review of Marine Science, 6, 195–219.

    Article  Google Scholar 

  • Alongi, D. M., Tirendi, F., Trott, L. A., & Xuan, T. T. (2000). Benthic decomposition rates and pathways in plantations of the mangrove Rhizophora apiculata in the Mekong delta, Vietnam. Marine Ecology Progress Series, 194, 87–101.

    Article  Google Scholar 

  • Alongi, D. M., Pfitzner, J., Trott, L. A., Tirendi, F., & Klumpp, D. W. (2005). Rapid sedimentation and microbial mineralization in mangrove forests of the Jiulongjiang estuary, China. Estuarine, Coastal and Shelf Science, 63, 605–618.

  • AOAC. (1984). Official methods of analysis (14th ed.). Arlington: Association of Official Analytical Chemists.

    Google Scholar 

  • Borges, A. V., Djenidi, S., Lacroix, G., Théate, J., Delille, B., & Frankignoulle, M. (2003). Atmospheric CO2 flux from mangrove surrounding waters. Geophysical Research Letters, 30, 1558.

    Article  Google Scholar 

  • Bouillon, S., Borges, A. V., Castaneda-Moya, E., Diele, K., Dittmar, T., Duke, N. C., Kristensen, E., Lee, S. Y., Marchand, C., Middelburg, J. J., Rivera-Monroy, V. H., Smith, T. J., & Twilley, R. R. (2008). Mangrove production and carbon sinks: a revision of global budget estimates. Global Biogeochemical Cycles, 22, GB2013.

    Article  Google Scholar 

  • Brown, S., Sathaye, J., Cannel, M., & Kauppi, P. (1996). Management of forests for mitigation of greenhouse gas emissions. In R. T. Watson, M. C. Zinyowera, & R. H. Moss (Eds.), Climate change 1995: impacts, adaptations, and mitigation of climate change: scientific-technical analyses, Chapter 24. Contribution of Working Group II to the Second Assessment Report of the Intergovernmental Panel on Climate Change (pp. 775–797). Cambridge: Cambridge University Press.

    Google Scholar 

  • Bulmer, R. H., Lundquist, C. J., & Schwendenmann, L. (2015). Sediment properties and CO efflux from intact and cleared temperate mangrove forests. Biogeosciences, 12, 6169–6180.

  • Cabezas, A., Mitsch, W. J., MacDonnell, C., Zhang, L., Bydałek, F., & Lasso, A. (2017). Methane emissions from mangrove soils in hydrologically disturbed and reference mangrove tidal creeks in southwest Florida. Ecological Engineering, 114, 57–65. https://doi.org/10.1016/j.ecoleng.2017.08.041.

    Article  Google Scholar 

  • Cannell, M. G. R., & Dewar, R. C. (1994). Carbon allocation in trees—a review of concepts for modeling. Advances in Ecological Research, 25, 59–104.

    Article  Google Scholar 

  • Chanda, A., Akhand, A., Manna, S., Dutta, S., Das, I., Hazra, S., Rao, K. H., & Dadhwal, V. K. (2014). Measuring daytime CO2 fluxes from the inter-tidal mangrove soils of Indian Sundarbans. Environmental Earth Sciences, 72, 417–427.

    Article  CAS  Google Scholar 

  • Chen, G. C., Tam, N. F. Y., & Ye, Y. (2010). Summer fluxes of atmospheric greenhouse gases N2O, CH4 and CO2 from mangrove soil in South China. Science of the Total Environment, 408, 2761–2767.

    Article  CAS  Google Scholar 

  • Chen, G. C., Tam, N. F. Y., & Ye, Y. (2012). Spatial and seasonal variations of atmospheric N2O and CO2 fluxes from a subtropical mangrove swamp and their relationships with soil characteristics. Soil Biology and Biochemistry, 48, 175–181.

    Article  CAS  Google Scholar 

  • Chen, G. C., Ulumuddin, Y. I., Pramudji, S., Chen, Y. C., Chen, B., Ye, B. Y., Ou, D. Y., Ma, Z. Y., Huang, H., & Wang, J. K. (2014). Rich soil carbon and nitrogen but low atmospheric greenhouse gas fluxes from North Sulawesi mangrove swamps in Indonesia. Science of the Total Environment, 487, 91–96.

    Article  CAS  Google Scholar 

  • Das, S., Ganguly, D., Ray, R., Jana, T. K., & De, T. K. (2017). Microbial activity determining soil CO2 emission in the Sundarban mangrove forest, India. Journal of Tropical Ecology, 58, 525–537.

    CAS  Google Scholar 

  • Deb Burman, P. K., Sarma, D., Williams, M., Karipot, A., & Chakraborty, S. (2017). Estimating gross primary productivity of a tropical forest ecosystem over north-east India using LAI and meteorological variables. Journal of Earth System Science, 126, 1–16.

    Article  CAS  Google Scholar 

  • Decho, A. W. (2000). Microbial biofilms in intertidal systems: an overview. Continental Shelf Research, 20, 1257–1273.

    Article  Google Scholar 

  • Donato, D. C., Kauffman, J. B., Murdiyarso, D., Kurnianto, S., Stidham, M., & Kanninen, M. (2011). Mangrove among the most carbon-rich forests in the tropics. Nature Geoscience, 4, 293–297.

    Article  CAS  Google Scholar 

  • Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I., & Marbà, N. (2013). The role of coastal plant communities for climate change mitigation and adaptation. Nature Climate Change, 3, 961–968.

    Article  CAS  Google Scholar 

  • Gnanamoorthy, P., Selvam, V., Chakraborty, S., Pramit, D., & Karipot A. (2017). Eddy covariance measurements of carbon dioxide (CO2) exchange in Pichavaram Mangrove Ecosystem, Southeast Coast of India. Proceedings of International Forestry and Environment Symposium, Sri Lanka. https://doi.org/10.31357/fesympo.v22i0.3333.

  • Guo, Y., Song, C., Wang, L., Tan, W., Wang, X., Cui, Q., & Wan, Z. (2016). Concentrations, sources, and export of dissolved CH4 and CO2 in rivers of the permafrost wetlands, northeast China. Ecological Engineering, 90, 491–497.

    Article  Google Scholar 

  • Hien, H. T., Marchand, C., Aimé, J., & Cuc, N. T. K. (2018). Seasonal variability of CO2 emissions from sediments in planted mangroves (Northern VietNam), Estuarine. Coastal and Shelf Science, 213, 28–39. https://doi.org/10.1016/j.ecss.2018.08.006.

    Article  CAS  Google Scholar 

  • Hirota, M., Senga, Y., Seike, Y., Nohara, S., & Kunii, H. (2007). Fluxes of carbon dioxide, methane and nitrous oxide in two contrastive fringing zones of coastal lagoon, lake Nakaumi, Japan. Chemosphere, 68, 597–603.

  • Ho, D. T., Ferron, S., Enge, V. C., Larsen, L. G., & Barr, J. G. (2014). Air-water gas exchange and CO2 flux in a mangrove-dominated estuary. Geophysical Research Letters, 41, 108–113.

    Article  CAS  Google Scholar 

  • Huang, B., Yu, K., & Gambrell, R. P. (2009). Effects of ferric iron reduction and regeneration on nitrous oxide and methane emissions in a rice soil. Chemosphere, 74, 481–486.

    Article  CAS  Google Scholar 

  • IPCC. (2013). Climate change 2013: the physical science basis (Contribution of working group 1 to the fifth assessment report of the intergovernmental panel on climate change). Cambridge: Cambridge University Press.

    Google Scholar 

  • Janssens, I. A., Freibauer, A., Ciais, P., Smith, P., Nabuurs, G. J., Folberth, G., Schlamadinger, B., Hutjes, R. W. A., Ceulemans, R., Schulze, E. D., Valentini, R., & Dolman, A. J. (2003). Europe’s terrestrial biosphere absorbs 7 to 12% of European anthropogenic CO2 emissions. Science, 300, 1538–1542.

    Article  CAS  Google Scholar 

  • Jennerjahn, T. C., & Ittekkot, V. (2002). Relevance of mangroves for the production and deposition of organic matter along tropical continental margins. The Science of Nature, 89, 23–30.

    Article  Google Scholar 

  • Jin, L., Lu, C. Y., Ye, Y., & Ye, G. F. (2013). Soil respiration in a subtropical mangrove wetland in the Jiulong River estuary, China. Pedosphere, 23, 678–685.

    Article  CAS  Google Scholar 

  • Kathiresan, K. (2000). A review of studies on Pichavaram mangrove, Southeast India. Hydrobiologia, 430, 185–205.

    Article  Google Scholar 

  • Kauffman, J. B., & Donato, D. (2012). Protocols for the measurement, monitoring and reporting of structure, biomass and carbon stocks in mangrove forests; Working Paper 86 (p. 40). Bogor: CIFOR.

    Google Scholar 

  • Khan, S. A., Ramachandran, A., Usha, N., Punitha, S., & Selvam, V. (2012). Predicted impact of the sea-level rise at Vellar Coleroon estuarine region of Tamil Nadu coast in India: Mainstreaming adaptation as a coastal zone management option. Ocean & Coastal Management, 69, 327–339.

    Article  Google Scholar 

  • Kristensen, E., Bouillon, S., Dittmar, T., & Marchand, C. (2008). Organic carbon dynamics in mangrove ecosystems: a review. Aquatic Botany, 89, 201–219.

    Article  CAS  Google Scholar 

  • Krumbein, W. C., & Pettijohn, F. J. (1938). Manual of sedimentary petrography (549 p). New York: Appleton Century Crofts.

    Google Scholar 

  • Lang'at, J. K. S., Kairo, J. G., Mencuccini, M., Bouillon, S., Skov, M. W., Waldron, S., & Huxham, M. (2014). Rapid losses of surface elevation following tree girdling and cutting in tropical mangroves. PLoS One, 9, 8.

    Article  Google Scholar 

  • Leopold, A., Marchand, C., Deborde, J., Chaduteau, C., & Allenbach, M. (2013). Influence of mangrove zonation on CO2 fluxes at the sediment-air interface (New Caledonia). Geoderma, 202, 62–70.

    Article  Google Scholar 

  • Leopold, A., Marchand, C., Deborde, J., & Allenbach, M. (2015). Temporal variability of CO2 fluxes at the sediment-air interface in mangroves (New Caledonia). Science of the Total Environment, 502, 617–626.

    Article  CAS  Google Scholar 

  • Lloyd, J., & Taylor, J. A. (1994). On the temperature dependence of soil respiration. Functional Ecology, 8, 315–323.

    Article  Google Scholar 

  • Lovelock, C. E. (2008). Soil respiration and belowground carbon allocation in mangrove forests. Ecosystems, 11, 342–354.

    Article  CAS  Google Scholar 

  • Myhre, G., et al. (2013). In T. F. Stocker et al. (Eds.), In climate change 2013: the physical science basis (pp. 659–740). Cambridge: IPCC, Cambridge Univ. Press.

    Google Scholar 

  • Olsen, S. R., Cole, C. V., Watanabe, F. S., & Dean, L. A. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. U. S. Department of Agriculture Circular No. 939. In A. D. Banderis, D. H. Barter, & K. Anderson. Agricultural and Advisor.

  • Purvaja, R., & Ramesh, R. (2000). Human impacts on methane emission from mangrove ecosystems in India. Regional Environmental Change, 1, 86–97.

    Article  Google Scholar 

  • Purvaja, R., & Ramesh, R. (2001). Natural and anthropogenic methane emission from coastal wetlands of South India. Environmental Management, 27, 547–557.

    Article  CAS  Google Scholar 

  • Raymond, P. A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C., Hoover, M., Butman, D., Striegl, R., Mayorga, E., Humborg, C., Kortelainen, P., Dürr, H., Meybeck, M., Ciais, P., & Guth, P. (2013). Global carbon dioxide emissions from inland waters. Nature, 503, 355–359.

    Article  CAS  Google Scholar 

  • Rhee, J. S., & Iamchaturapatr, J. (2009). Carbon capture and sequestration by a treatment wetland. Ecological Engineering, 35, 393–401.

    Article  Google Scholar 

  • Selvam, V. (2003). Environmental classification of mangrove wetlands of India. Current Science, 84, 759–765.

    Google Scholar 

  • Selvam, V., Gnanappazham, L., Navamuniyammal, M., Ravichandran, K. K., & Karunagaram, V. M. (2002). Atlas of mangrove wetlands of India (pp. 12–58). Chennai: M.S. Swaminathan Research Foundation.

    Google Scholar 

  • Sidik, F., & Lovelock, C. E. (2013). CO2 efflux from shrimp ponds in Indonesia. PLoS One, 8, e66329.

    Article  CAS  Google Scholar 

  • Thompson, R. L., Patra, P. K., Chevallier, F., Maksyutov, S., Law, R. M., Ziehn, T., van der Laan-Luijkx, I. T., Peters, W., Ganshin, A., Zhuravlev, R., Maki, T., Nakamura, T., Shirai, T., Ishizawa, M., Saeki, T., Poulter, B., Canadell, J. G., & Ciais, P. (2016). Top-down assessment of the Asian carbon budget since the mid 1990s. Nature Communications, 7, 10724.

    Article  CAS  Google Scholar 

  • Walkley, A., & Black, I. A. (1934). An examination of Degtjareff method for determining soil organic matter, and proposed modification of the chromic acid tritation method. Soil Science., 37, 29–38.

    Article  CAS  Google Scholar 

  • Wang, D., Chen, Z., Wang, J., Xu, S., Yang, H., Chen, H., & Yang, L. (2007). Fluxes of CH4, CO2 and N2O from yangtze estuary intertidal flat in summer season. Geochimica, 36, 78–88 (in Chinese).

Download references

Acknowledgements

The authors would like to thank the Tamil Nadu forest department for providing the necessary permission. We are grateful to the founder Chairman and Chairperson of MSSRF for providing facilities for this work.

Funding

This study received funding from the Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Govt. of India, Pune, (CCCR/Fluxnet/VS/2015-16) and guidance under the METFLUX project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Gnanamoorthy.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gnanamoorthy, P., Selvam, V., Ramasubramanian, R. et al. Diurnal and seasonal patterns of soil CO2 efflux from the Pichavaram mangroves, India. Environ Monit Assess 191, 258 (2019). https://doi.org/10.1007/s10661-019-7407-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7407-2

Keywords

Navigation