Advertisement

A review on the advanced leachate treatment technologies and their performance comparison: an opportunity to keep the environment safe

  • Pau Loke ShowEmail author
  • Preeti Pal
  • Hui Yi Leong
  • Joon Ching Juan
  • Tau Chuan Ling
Article
  • 127 Downloads

Abstract

Landfill application is the most common approach for biowaste treatment via leachate treatment system. When municipal solid waste deposited in the landfills, microbial decomposition breaks down the wastes generating the end products, such as carbon dioxide, methane, volatile organic compounds, and liquid leachate. However, due to the landfill age, the fluctuation in the characteristics of landfill leachate is foreseen in the leachate treatment plant. The focuses of the researchers are keeping leachate from contaminating groundwater besides keeping potent methane emissions from reaching the atmosphere. To address the above issues, scientists are required to adopt green biological methods to keep the environment safe. This review focuses on the assorting of research papers on organic content and nitrogen removal from the leachate via recent effective biological technologies instead of conventional nitrification and denitrification process. The published researches on the characteristics of various Malaysian landfill sites were also discussed. The understanding of the mechanism behind the nitrification and denitrification process will help to select an optimized and effective biological treatment option in treating the leachate waste. Recently, widely studied technologies for the biological treatment process are aerobic methane oxidation coupled to denitrification (AME-D) and partial nitritation–anammox (PN/A) process, and both were discussed in this review article. This paper gives the idea of the modification of the conventional treatment technologies, such as combining the present processes to make the treatment process more effective. With the integration of biological process in the leachate treatment, the effluent discharge could be treated in shortcut and novel pathways, and it can lead to achieving “3Rs” of reduce, reuse, and recycle approach.

Keywords

Biowaste Landfill leachate Leachate treatment Biological Nitrogen removal 

Notes

Acknowledgments

The authors would like to thank Trans Disciplinary Research Grant Scheme (TGRS) under Ministry of Higher Education (Project No.: TR001-2015A) for financially supporting this research.

References

  1. Abbas, A. A., Jingsong, G., Ping, L. Z., Ya, P. Y., & Al-Rekabi, W. S. (2009). Review on landfill leachate treatments. Journal of Applied Sciences Research, 5, 534–545.Google Scholar
  2. Abma, W. R., Schultz, C. E., Mulder, J. W., Van der Star, W. R., Strous, M., Tokutomi, T., & Van Loosdrecht, M. C. (2007). Full-scale granular sludge anammox process. Water Science and Technology, 55, 8–9.Google Scholar
  3. Abma, W. R., Driessen, W., Haarhuis, R., & Van Loosdrecht, M. C. (2010). Upgrading of sewage treatment plant by sustainable and cost-effective separate treatment of industrial wastewater. Water Science and Technology, 61, 1715–1722.Google Scholar
  4. Abood, A. R., Bao, J., & Abudi, Z. N. (2013). Biological nutrient removal by internal circulation upflow sludge blanket reactor after landfill leachate pretreatment. Journal of Environmental Sciences, 25, 2130–2137.Google Scholar
  5. Agamuthu, P., & Masaru, T. (2014). Municipal solid waste management in Asia and the Pacific Islands: challenges and strategic solutions. Singapore: Springer.Google Scholar
  6. Akkaya, E., Demir, A., Karadag, D., Varank, G., Bilgili, M. S., & Ozkaya, B. (2010). Post-treatment of anaerobically treated medium-age landfill leachate. Environmental Progress & Sustainable Energy, 29, 78–84.Google Scholar
  7. Alvarez-Vazquez, H., Jefferson, B., & Judd, S. J. (2004). Membrane bioreactors vs conventional biological treatment of landfill leachate: a brief review. Journal of Chemical Technology and Biotechnology, 79, 1043–1049.Google Scholar
  8. Amr, A. S. S., Aziz, H. A., Adlan, M. N., & Alkasseh, J. M. (2014). Effect of ozone and ozone/persulfate processes on biodegradable and soluble characteristics of semiaerobic stabilized leachate. Environmental Progress & Sustainable Energy, 33, 184–191.Google Scholar
  9. Andrus, J. M., Porter, M. D., Rodríguez, L. F., Kuehlhorn, T., Cooke, R. A., Zhang, Y., Kent, A. D., & Zilles, J. L. (2014). Spatial variation in the bacterial and denitrifying bacterial community in a biofilter treating subsurface agricultural drainage. Microbial Ecology, 67, 265–272.Google Scholar
  10. Aziz, H. A., Yusoff, M. S., Adlan, M. N., Adnan, N. H., & Alias, S. (2004). Physico-chemical removal of iron from semi-aerobic landfill leachate by limestone filter. Waste Management, 24, 353–358.Google Scholar
  11. Aziz, H. A., Alias, S., Adlan, M. N., Asaari, A. H., & Zahari, M. S. (2007). Colour removal from landfill leachate by coagulation and flocculation processes. Bioresource Technology, 98, 218–220.Google Scholar
  12. Aziz, H. A., Yusoff, M. S., Aziz, S. Q., Umar, M., & Bashir, M. J. (2009). A leachate quality at Pulau Burung, Kuala Sepetang and Kulim landfills—a comparative study. Proceedings Civil Engineering Conference (AWAM 09), 978-983.Google Scholar
  13. Aziz, S. Q., Aziz, H. A., Yusoff, M. S., Bashir, M. J., & Umar, M. (2010). Leachate characterization in semi-aerobic and anaerobic sanitary landfills: a comparative study. Journal of Environmental Management, 91, 2608–2614.Google Scholar
  14. Aziz, S. Q., Aziz, H. A., Bashir, M. J., & Mojiri, A. (2015). Assessment of various tropical municipal landfill leachate characteristics and treatment opportunities. Global NEST Journal, 17, 439–450.Google Scholar
  15. Bai, T., Lei, H., Yu, G., Yu, Q., Li, Z., & Li, H. (2009). High nitrite accumulation and strengthening denitrification for old-age landfill leachate treatment using an autocontrol two-stage hybrid process. Process Safety and Environment Protection, 87, 307–314.Google Scholar
  16. Bashir, M. J., Isa, M. H., Kutty, S. R., Awang, Z. B., Aziz, H. A., Mohajeri, S., & Farooqi, I. H. (2009). Landfill leachate treatment by electrochemical oxidation. Waste Management, 29, 2534–2541.Google Scholar
  17. Beck, D. A., Kalyuzhnaya, M. G., Malfatti, S., Tringe, S. G., del Rio, T. G., Ivanova, N., Lidstrom, M. E., & Chistoserdova, L. (2013). A metagenomic insight into freshwater methane-utilizing communities and evidence for cooperation between the Methylococcaceae and the Methylophilaceae. PeerJ., 9, 23.Google Scholar
  18. Bettazzi, E., Caffaz, S., Vannini, C., & Lubello, C. (2010). Nitrite inhibition and intermediates effects on anammox bacteria: a batch-scale experimental study. Process Biochemistry, 45, 573–580.Google Scholar
  19. Blackburne, R., Yuan, Z., & Keller, J. (2008). Partial nitrification to nitrite using low dissolved oxygen concentration as the main selection factor. Biodegradation, 19, 303–312.Google Scholar
  20. Bothe, H., Jensen, K. M., Mergel, A., Larsen, J., Jørgensen, C., Bothe, H., & Jørgensen, L. (2008). Heterotrophic bacteria growing in association with Methylococcus capsulatus (Bath) in a single cell protein production process. Applied Microbiology and Biotechnology, 59, 33–39.Google Scholar
  21. Bousquet, P., Ciais, P., Miller, J. B., Dlugokencky, E. J., Hauglustaine, D. A., Prigent, C., Van der Werf, G. R., Peylin, P., Brunke, E. G., Carouge, C., & Langenfelds, R. L. (2006). Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature, 443, 439–443.Google Scholar
  22. Bru, D., Sarr, A., & Philippot, L. (2007). Relative abundances of proteobacterial membrane-bound and periplasmic nitrate reductases in selected environments. Applied and Environmental Microbiology, 73, 5971–5974.Google Scholar
  23. Cassano, D., Zapata, A., Brunetti, G., Del Moro, G., Di Iaconi, C., Oller, I., Malato, S., & Mascolo, G. (2011). Comparison of several combined/integrated biological—AOPs setups for the treatment of municipal landfill leachate: minimization of operating costs and effluent toxicity. Chemical Engineering Journal, 172, 250–257.Google Scholar
  24. Christensen, T. H., Kjeldsen, P., Bjerg, P. L., Jensen, D. L., Christensen, J. B., Baun, A., Albrechtsen, H. J., & Heron, G. (2001). Biogeochemistry of landfill leachate plumes. Applied Geochemistry, 16, 659–718.Google Scholar
  25. Christianson, L., Helmers, M., Bhandari, A., & Moorman, T. (2013). Internal hydraulics of an agricultural drainage denitrification bioreactor. Ecological Engineering, 52, 298–307.Google Scholar
  26. Chung, J., Amin, K., Kim, S., Yoon, S., Kwon, K., & Bae, W. (2014). Autotrophic denitrification of nitrate and nitrite using thiosulfate as an electron donor. Water Research, 58, 169–178.Google Scholar
  27. Costa, C., Dijkema, C., Friedrich, M., Garcia-Encina, P., Fernandez-Polanco, F., & Stams, A. J. (2000). Denitrification with methane as electron donor in oxygen-limited bioreactors. Applied Microbiology and Biotechnology, 53, 754–762.Google Scholar
  28. Dapena-Mora, A., Fernandez, I., Campos, J. L., Mosquera-Corral, A., Mendez, R., & Jetten, M. S. (2007). Evaluation of activity and inhibition effects on anammox process by batch tests based on the nitrogen gas production. Enzyme and Microbial Technology, 40, 859–865.Google Scholar
  29. DEFRA. (2011). Government review of waste policy in England, Department of Environment-Food and Rural Affairs.Google Scholar
  30. Desloover, J., De Clippeleir, H., Boeckx, P., Du Laing, G., Colsen, J., Verstraete, W., & Vlaeminck, S. E. (2011). Floc-based sequential partial nitritation and anammox at full scale with contrasting N2O emissions. Water Research, 45, 2811–2821.Google Scholar
  31. Dumont, M. G., Pommerenke, B., & Casper, P. (2013). Using stable isotope probing to obtain a targeted metatranscriptome of aerobic methanotrophs in lake sediment. Environmental Microbiology Reports, 5, 757–764.Google Scholar
  32. Dunfield, P. F., Yuryev, A., Senin, P., Smirnova, A. V., Stott, M. B., Hou, S., Ly, B., Saw, J. H., Zhou, Z., Ren, Y., & Wang, J. (2007). Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature, 450, 879–882.Google Scholar
  33. Egli, K., Fanger, U., Alvarez, P. J., Siegrist, H., van der Meer, J. R., & Zehnder, A. J. (2001). Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate. Archives of Microbiology, 175, 198–207.Google Scholar
  34. Eisentraeger, A., Klag, P., Vansbotter, B., Heymann, E., & Dott, W. (2001). Denitrification of groundwater with methane as sole hydrogen donor. Water Research, 35, 2261–2267.Google Scholar
  35. Elgood, Z., Robertson, W. D., Schiff, S. L., & Elgood, R. (2010). Nitrate removal and greenhouse gas production in a stream-bed denitrifying bioreactor. Ecological Engineering, 36, 1575–1580.Google Scholar
  36. Europasia Engineering Services Sdn. Bhd. (2016). Detailed EIA for the Proposed Expansion of 130.55 Acres Sanitary Landfill in Mukim Jeram, District of Kuala Selangor, Selangor Darul Ehsan.Google Scholar
  37. Fernández, I., Dosta, J., Fajardo, C., Campos, J. L., Mosquera-Corral, A., & Méndez, R. (2012). Short-and long-term effects of ammonium and nitrite on the anammox process. Journal of Environmental Management, 95, S170–S174.Google Scholar
  38. Foo, K. Y., & Hameed, B. H. (2009). An overview of landfill leachate treatment via activated carbon adsorption process. Journal of Hazardous Materials, 171, 54–60.Google Scholar
  39. Fux, C., Huang, D., Monti, A., & Siegrist, H. (2004). Difficulties in maintaining long-term partial nitritation of ammonium-rich sludge digester liquids in a moving-bed biofilm reactor (MBBR). Water Science and Technology, 49, 11–12.Google Scholar
  40. Ghafari, S., Aziz, H. A., & Bashir, M. J. (2010). The use of poly-aluminum chloride and alum for the treatment of partially stabilized leachate: a comparative study. Desalination, 257, 110–116.Google Scholar
  41. Güven, D., Dapena, A., Kartal, B., Schmid, M. C., Maas, B., van de Pas-Schoonen, K., Sozen, S., Mendez, R., den Camp, H. J., Jetten, M. S., & Strous, M. (2005). Propionate oxidation by and methanol inhibition of anaerobic ammonium-oxidizing bacteria. Applied and Environmental Microbiology, 71, 1066–1071.Google Scholar
  42. Haroon, M. F., Hu, S., Shi, Y., Imelfort, M., Keller, J., Hugenholtz, P., Yuan, Z., & Tyson, G. W. (2013). Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature, 500, 567–570.Google Scholar
  43. Hassan, M., & Xie, B. (2014). Use of aged refuse-based bioreactor/biofilter for landfill leachate treatment. Applied Microbiology and Biotechnology, 98, 6543–6553.Google Scholar
  44. Herbert, R. B., Jr., Winbjörk, H., Hellman, M., & Hallin, S. (2014). Nitrogen removal and spatial distribution of denitrifier and anammox communities in a bioreactor for mine drainage treatment. Water Research, 66, 350–360.Google Scholar
  45. Hippen, A., Rosenwinkel, K. H., Baumgarten, G., & Seyfried, C. F. (1997). Aerobic deammonification: a new experience in the treatment of waste waters. Water Science and Technology, 35, 111–120.Google Scholar
  46. Hoang, V. Y., Jupsin, H., Le, V. C., & Vasel, J. L. (2012). Modeling of partial nitrification and denitrification in an SBR for leachate treatment without carbon addition. Journal of Material Cycles and Waste Management, 14, 3–13.Google Scholar
  47. Hoornweg, D., Bhada-Tata, P. (2012). What a waste: a global review of solid waste management. World Bank’s Urban Development and Local Government Unit of the Sustainable Development Network.Google Scholar
  48. Huo, S., Xi, B., Yu, H., He, L., Fan, S., & Liu, H. (2008). Characteristics of dissolved organic matter (DOM) in leachate with different landfill ages. Journal of Environmental Sciences, 20, 492–498.Google Scholar
  49. Isaka, K., Suwa, Y., Kimura, Y., Yamagishi, T., Sumino, T., & Tsuneda, S. (2008). Anaerobic ammonium oxidation (anammox) irreversibly inhibited by methanol. Applied Microbiology and Biotechnology, 81, 379–385.Google Scholar
  50. Islam, T., Jensen, S., Reigstad, L. J., Larsen, O., & Birkeland, N. K. (2008). Methane oxidation at 55°C and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. Proceedings of the National Academy of Sciences of the United States of America, 105, 300–304.Google Scholar
  51. Jayanthi, B., Emenike, C. U., Agamuthu, P., Simarani, K., Mohamad, S., & Fauziah, S. H. (2016). Selected microbial diversity of contaminated landfill soil of Peninsular Malaysia and the behavior towards heavy metal exposure. Catena, 147, 25–31.Google Scholar
  52. Jeanningros, Y., Graveleau, L., Kaldate, A., Vlaeminck, S. E., & Verstraete, W. (2010). Fast start-up of a pilot-scale deammonification sequencing batch reactor from an activated sludge inoculum. Water Science and Technology, 61, 1393–1400.Google Scholar
  53. Jensen, D. L., Ledin, A., & Christensen, T. H. (1999). Speciation of heavy metals in landfill-leachate polluted groundwater. Water Research, 33, 2642–2650.Google Scholar
  54. Jetten, M. S., Wagner, M., Fuerst, J., van Loosdrecht, M., Kuenen, G., & Strous, M. (2001). Microbiology and application of the anaerobic ammonium oxidation (‘anammox’) process. Current Opinion in Biotechnology, 12, 283–288.Google Scholar
  55. Jones, D. L., Williamson, K. L., & Owen, A. G. (2006). Phytoremediation of landfill leachate. Waste Management, 26, 825–837.Google Scholar
  56. Jones, C. M., Stres, B., Rosenquist, M., & Hallin, S. (2008). Phylogenetic analysis of nitrite, nitric oxide, and nitrous oxide respiratory enzymes reveal a complex evolutionary history for denitrification. Molecular Biology and Evolution, 25, 1955–1966.Google Scholar
  57. Joss, A., Salzgeber, D., Eugster, J., König, R., Rottermann, K., Burger, S., Fabijan, P., Leumann, S., Mohn, J., & Siegrist, H. (2009). Full-scale nitrogen removal from digester liquid with partial nitritation and anammox in one SBR. Environmental Science & Technology, 43, 5301–5306.Google Scholar
  58. Joss, A., Derlon, N., Cyprien, C., Burger, S., Szivak, I., Traber, J., Siegrist, H., & Morgenroth, E. (2011). Combined nitritation-anammox: advances in understanding process stability. Environmental Science & Technology, 45, 9735–9742.Google Scholar
  59. Kalyuhznaya, M. G., Martens-Habbena, W., Wang, T., Hackett, M., Stolyar, S. M., Stahl, D. A., Lidstrom, M. E., & Chistoserdova, L. (2009). Methylophilaceae link methanol oxidation to denitrification in freshwater lake sediment as suggested by stable isotope probing and pure culture analysis. Environmental Microbiology Reports, 1, 385–392.Google Scholar
  60. Kartal, B., Rattray, J., van Niftrik, L. A., van de Vossenberg, J., Schmid, M. C., Webb, R. I., Schouten, S., Fuerst, J. A., Damsté, J. S., Jetten, M. S., & Strous, M. (2007). Candidatus Anammoxoglobus propionicus a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria. Systematic and Applied Microbiology, 30, 39–49.Google Scholar
  61. Kim, S., Jung, H., Kim, K. S., & Kim, I. S. (2004). Treatment of high nitrate-containing wastewaters by sequential heterotrophic and autotrophic denitrification. Journal of Environmental Engineering, 130, 1475–1480.Google Scholar
  62. Kim, D., Ryu, H. D., Kim, M. S., Kim, J., & Lee, S. I. (2007). Enhancing struvite precipitation potential for ammonia nitrogen removal in municipal landfill leachate. Journal of Hazardous Materials, 146, 81–85.Google Scholar
  63. Kits, K. D., Klotz, M. G., & Stein, L. Y. (2015). Methane oxidation coupled to nitrate reduction under hypoxia by the Gammaproteobacterium Methylomonas denitrificans, sp. nov. type strain FJG1. Environmental Microbiology, 17, 3219–3232.Google Scholar
  64. Kjeldsen, P., Barlaz, M., Rooker, A., Baun, A., Ledin, A., & Christensen, T. (2002). Present and long-term composition of MSW landfill leachate: a review. Critical Reviews in Environment Science and Technology, 32, 297–336.Google Scholar
  65. Knittel, K., & Boetius, A. (2009). Anaerobic oxidation of methane: progress with an unknown process. Annual Review of Microbiology, 63, 311–334.Google Scholar
  66. Kornboonraksa, T. H., Lee, S., Lee, S. H., & Chiemchaisri, C. (2009). Application of chemical precipitation and membrane bioreactor hybrid process for piggery wastewater treatment. Bioresource Technology, 100, 1963–1968.Google Scholar
  67. Kulikowska, D., & Klimiuk, E. (2008). The effect of landfill age on municipal leachate composition. Bioresource Technology, 99, 5981–5985.Google Scholar
  68. Kurniawan, T. A., Lo, W. H., & Chan, G. Y. S. (2006a). Physico-chemical treatments for removal of recalcitrant contaminants from landfill leachate. Journal of Hazardous Materials, 129, 80–100.Google Scholar
  69. Kurniawan, T. A., Lo, W. H., & Chan, G. Y. S. (2006b). Radicals-catalyzed oxidation reactions for degradation of recalcitrant compounds from landfill leachate. Chemical Engineering Journal, 125, 35–57.Google Scholar
  70. Lackner, S., Gilbert, E. M., Vlaeminck, S. E., Joss, A., Horn, H., & van Loosdrecht, M. C. (2014). Full-scale partial nitritation/anammox experiences—an application survey. Water Research, 55, 292–303.Google Scholar
  71. Leachater. (2011). How leachate changes in a landfill over time. The Leachate Expert Website.Google Scholar
  72. Lee, S. W., Im, J., DiSpirito, A. A., Bodrossy, L., Barcelona, M. J., & Semrau, D. (2009). Effect of nutrient and selective inhibitor amendments on methane oxidation, nitrous oxide production, and key gene presence and expression in landfill cover soils: characterization of the role of methanotrophs, nitrifiers, and denitrifiers. Applied Microbiology and Biotechnology, 85, 389–403.Google Scholar
  73. Lee, A. H., Nikraz, H., & Hung, Y. T. (2010). Influence of waste age on landfill leachate quality. International Journal of Environmental Science and Development, 1, 347–350.Google Scholar
  74. Li, X. Z., & Zhao, Q. L. (2002). MAP precipitation from landfill leachate and seawater bittern waste. Environmental Technology, 23, 989–1000.Google Scholar
  75. Lieberman, R. L., & Rosenzweig, A. C. (2004). Biological methane oxidation: regulation, biochemistry, and active site structure of particulate methane monooxygenase. Critical Reviews in Biochemistry and Molecular Biology, 39, 147–164.Google Scholar
  76. Lim, C. K., Seow, T. W., Neoh, C. H., Nor, M. H. M., Ibrahim, Z., Ware, I., & Sarip, S. H. M. (2016). Treatment of landfill leachate using ASBR combined with zeolite adsorption technology. Biotech, 6, 1–6.Google Scholar
  77. Liu, L. H., & Koenig, A. (2002). Use of limestone for pH control in autotrophic denitrification: batch experiments. Process Biochemistry, 37, 885–893.Google Scholar
  78. Liu, H. J., Jiang, W., Wan, D. J., & Qu, J. H. (2009). Study of a combined heterotrophic and sulfur autotrophic denitrification technology for removal of nitrate in water. Journal of Hazardous Materials, 169, 23–28.Google Scholar
  79. Liu, J., Sun, F., Wang, L., Ju, X., Wu, W., & Chen, Y. (2014). Molecular characterization of a microbial consortium involved in methane oxidation coupled to denitrification under micro-aerobic conditions. Microbial Biotechnology, 7, 64–76.Google Scholar
  80. Liu, Z. P., Wu, W. H., Shi, P., Guo, J. S., & Cheng, J. (2015). Characterization of dissolved organic matter in landfill leachate during the combined treatment process of air stripping, Fenton, SBR and coagulation. Waste Management, 41, 111–118.Google Scholar
  81. Lotti, T., van der Star, W. R. L., Kleerebezem, R., Lubello, C., & van Loosdrecht, M. C. M. (2012). The effect of nitrite inhibition on the anammox process. Water Research, 46, 2559–2569.Google Scholar
  82. Luesken, F. A., Wu, M. L., Op den Camp, H. J. M., Keltjens, J. T., Stunnenberg, H., Francoijs, K., Strous, M., & Jetten, M. S. M. (2012). Effect of oxygen on the anaerobic methanotroph Candidatus Methylomirabilis oxyfera: kinetic and transcriptional analysis. Environmental Microbiology, 14, 1024–1034.Google Scholar
  83. Manaf, L. A., Samah, M. A. A., & Zukki, N. I. M. (2009). Municipal solid waste management in Malaysia: practices and challenges. Waste Management, 29, 2902–2906.Google Scholar
  84. Manconi, I., Carucci, A., & Lens, P. (2007). Combined removal of sulfur compounds and nitrate by autotrophic denitrification in bioaugmented activated sludge system. Biotechnology and Bioengineering, 98, 551–560.Google Scholar
  85. Mandernack, K. W., Kinney, C. A., Coleman, D., Huang, Y. S., Freeman, K. H., & Bogner, J. (2000). The biogeochemical controls of N2O production and emission in landfill cover soils: the role of methanotrophs in the nitrogen cycle. Environmental Microbiology, 2, 298–309.Google Scholar
  86. Martin, K. J., & Nerenberg, N. (2012). The membrane biofilm reactor (MBfR) for water and wastewater treatment: principles, applications, and recent developments. Bioresource Technology, 122, 83–94.Google Scholar
  87. Marttinen, S. K., Kettunen, R. H., & Rintala, J. A. (2003). Occurrence and removal of organic pollutants in sewages and landfill leachates. The Science of the Total Environment, 301, 1–12.Google Scholar
  88. Modin, O., Fukushi, K., & Yamamoto, K. (2007). Denitrification with methane as external carbon source. Water Research, 41, 2726–2738.Google Scholar
  89. Modin, O., Fukushi, K., Nakajima, F., & Yamamoto, K. (2008). Performance of a membrane biofilm reactor for denitrification with methane. Bioresource Technology, 99, 8054–8060.Google Scholar
  90. Modin, O., Fukushi, K., Nakajima, F., & Yamamoto, K. (2010). Nitrate removal and biofilm characteristics in methanotrophic membrane biofilm reactors with various gas supply regimes. Water Research, 44, 85–96.Google Scholar
  91. Mohammadzadeh, H., Clark, I., Marschner, M., & St-Jean, G. (2005). Compound Specific Isotopic Analysis (CSIA) of landfill leachate DOC components. Chemical Geology, 218, 3–13.Google Scholar
  92. Moon, H. S., Ahn, K. H., Lee, S., Nam, K., & Kim, J. Y. (2004). Use of autotrophic sulfur-oxidizers to remove nitrate from bank filtrate in a permeable reactive barrier system. Environmental Pollution, 129(3), 499–507.Google Scholar
  93. Mulder, A. (2003). The quest for sustainable nitrogen removal technologies. Water Science and Technology, 48, 67–75.Google Scholar
  94. Nazrieza, N., Siti Rohana, M. Y., Subramaniam, K., & Hazilia, H. (2015). Characterization of leachate from panchang bedena landfill, Batang Padang Landfill and Matang Landfill: a comparative study. Malaysian Journal of Science, 34, 69–77.Google Scholar
  95. Oman, C. B., & Junestedt, C. (2008). Chemical characterization of landfill leachates—400 parameters and compounds. Waste Management, 28, 1876–1891.Google Scholar
  96. Oulego, P., Collado, S., Laca, A., & Díaz, M. (2016). Impact of leachate composition on the advanced oxidation treatment. Water Research, 88, 389–402.Google Scholar
  97. Park, S., & Yoon, T. (2007). The effects of iron species and mineral particles on advanced oxidation processes for the removal of humic acids. Desalination, 208, 181–191.Google Scholar
  98. Philippot, L., Andert, J., Jones, C. M., Bru, D., & Hallin, S. (2011). Importance of denitrifiers lacking the genes encoding the nitrous oxide reductase for N2O emissions from soil. Global Change Biology, 17, 1497–1504.Google Scholar
  99. Pol, A., Heijmans, K., Harhangi, H. R., Tedesco, D., Jetten, M. S. M., & Op den Camp, H. J. M. (2007). Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature., 450, 874–878.Google Scholar
  100. Pollice, A., Tandoi, V., & Lestingi, C. (2002). Influence of aeration and sludge retention time on ammonium oxidation to nitrite and nitrate. Water Research, 36, 2541–2546.Google Scholar
  101. Price, G. A., Barlaz, M. A., & Hater, G. R. (2003). Nitrogen management in bioreactor landfills. Waste Management, 23, 675–688.Google Scholar
  102. Puyol, D., Carvajal-Arroyo, J. M., Sierra-Alvarez, R., & Field, J. A. (2014). Nitrite (not free nitrous acid) is the main inhibitor of the anammox process at common pH conditions. Biotechnology Letters, 36, 547–551.Google Scholar
  103. Renou, S., Givaudan, J. G., Poulain, S., Dirassouyan, F., & Moulin, P. (2008). Landfill leachate treatment: review and opportunity. Journal of Hazardous Materials, 150, 468–493.Google Scholar
  104. Richardson, D. J., Berks, B. C., Russell, D. A., Spiro, S., & Taylor, C. J. (2001). Functional, biochemical and genetic diversity of prokaryotic nitrate reductases. Cellular and Molecular Life Sciences, 58, 165–178.Google Scholar
  105. Rigby, H., & Smith, S. R. (2013). Nitrogen availability and indirect measurements of greenhouse gas emissions from aerobic and anaerobic biowaste digestates applied to agricultural soils. Waste Management, 33, 2641–2652.Google Scholar
  106. Rivas, F. J., Beltrán, F., Carvalho, F., Acedo, B., & Gimeno, O. (2004). Stabilized leachates: sequential coagulation-flocculation+chemical oxidation process. Journal of Hazardous Materials, 116, 95–102.Google Scholar
  107. Rosenwinkel, K. H., & Cornelius, A. (2005). Deammonification in the moving-bed process for the treatment of wastewater with high ammonia content. Chemical Engineering and Technology, 28, 49–52.Google Scholar
  108. Ruiz, G., Jeison, D., & Chamy, R. (2003). Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration. Water Research, 37, 1371–1377.Google Scholar
  109. Ruiz, G., Jeison, D., Rubilar, O., Ciudad, G., & Chamy, R. (2006). Nitrification-denitrification via nitrite accumulation for nitrogen removal from wastewaters. Bioresource Technology, 97, 330–335.Google Scholar
  110. Sadri, S., Cicek, N., & Van Gulck, J. (2008). Aerobic treatment of landfill leachate using a submerged membrane bioreactor-prospects for onsite use. Environmental Technology, 29, 899–907.Google Scholar
  111. Sawyer, C. N., McCarty, P. L., & Parkin, G. F. (2003). Chemistry for environmental engineering and science. Boston: McGraw-Hill.Google Scholar
  112. Schüch, A., Morscheck, G., Lemke, A., & Nelles, M. (2016). Bio-waste recycling in Germany—further challenges. Procedia Environmental Sciences, 35, 308–318.Google Scholar
  113. Siegrist, H., Salzgeber, D., Eugster, J., & Joss, A. (2008). Anammox brings WWTP closer to energy autarky due to increased biogas production and reduced aeration energy for N-removal. Water Science and Technology, 57, 383–388.Google Scholar
  114. Silva, T. F., Silva, M. E., Cunha-Queda, A. C., Fonseca, A., Saraiva, I., Sousa, M. A., Gonçalves, C., Alpendurada, M. F., Boaventura, R. A., & Vilar, V. J. (2013). Multistage treatment system for raw leachate from sanitary landfill combining biological nitrification-denitrification/solar photo-Fenton/biological processes, at a scale close to industrial-biodegradability enhancement and evolution profile of trace pollutants. Water Research, 47, 6167–6186.Google Scholar
  115. Silva, T. F., Soares, P. A., Manenti, D. R., Fonseca, A., Saraiva, I., Boaventura, R. A., & Vilar, V. J. (2017). An innovative multistage treatment system for sanitary landfill leachate depuration: studies at pilot-scale. The Science of the Total Environment, 576, 99–117.Google Scholar
  116. Statom, R. A., Thyne, G. D., & McCray, J. E. (2004). Temporal changes in leachate chemistry of a municipal solid waste landfill cell in Florida, USA. Environmental Geology, 45, 982–991.Google Scholar
  117. Stein, L. Y., & Klotz, M. G. (2011). Nitrifying and denitrifying pathways of methanotrophic bacteria. Biochemical Society Transactions, 39, 1826–1831.Google Scholar
  118. Stoecker, K., Bendinger, B., Schöning, B., Nielsen, P. H., Nielsen, J. L., Baranyi, C., Toenshoff, E. R., Daims, H., & Wagner, M. (2006). Cohn’s Crenothrix is a filamentous methane oxidizer with an unusual methane monooxygenase. Proceedings of the National Academy of Sciences of the United States of America, 103, 2363–2367.Google Scholar
  119. Strous, M., Kuenen, J. G., & Jetten, M. S. (1999). Key physiology of anaerobic ammonium oxidation. Applied and Environmental Microbiology, 65, 3248–3250.Google Scholar
  120. Sun, F. Y., Dong, W. Y., Shao, M. F., Lv, X. M., Li, J., Peng, L. Y., & Wang, H. J. (2013). Aerobic methane oxidation coupled to denitrification in a membrane biofilm reactor: treatment performance and the effect of oxygen ventilation. Bioresource Technology, 145, 2–9.Google Scholar
  121. Szatkowska, B., Cema, G., Plaza, E., Trela, J., & Hultman, B. (2007). A one-stage system with partial nitritation and anammox processes in the moving-bed biofilm reactor. Water Science and Technology, 55, 8–9.Google Scholar
  122. Taha, M. R., Zuhairi, W., Yaacob, W., Samsudin, A. R., & Yaakob, J. (2011). Groundwater quality at two landfill sites in Selangor, Malaysia. Bulletin. Geological Society of Malaysia, 57, 13–18.Google Scholar
  123. Tamas, I., Smirnova, A. V., He, Z., & Dunfield, P. F. (2014). The (d)evolution of methanotrophy in the Beijerinckiaceae—a comparative genomics analysis. The ISME Journal, 8, 369–382.Google Scholar
  124. Tang, C., Zheng, J. P., Wang, C. H., Mahmood, Q., Zhang, J. Q., Chen, X. G., Zhang, L., & Chen, J. W. (2011). Performance of high-loaded anammox UASB reactors containing granular sludge. Water Research, 45, 135–144.Google Scholar
  125. Tatsi, A. A., & Zouboulis, A. I. (2002). A field investigation of the quantity and quality of leachate from a municipal solid waste landfill in a Mediterranean climate (Thessaloniki, Greece). Advances in Environmental Research, 6, 207–219.Google Scholar
  126. Tatsi, A. A., Zouboulis, A. I., Matis, K. A., & Samaras, P. (2003). Coagulation-flocculation pretreatment of sanitary landfill leachates. Chemosphere, 53, 737–744.Google Scholar
  127. Tchobanoglous, G., & Kreith, F. (2002). Handbook of solid waste management. New York, NY: McGraw-Hill.Google Scholar
  128. Tchobanoglous, G., Theisen, H., & Vigil, S. A. (1993). Integrated solid waste management: engineering principles and management issues. New York, NY: McGraw-Hill Inc.Google Scholar
  129. Third, K. A., Paxman, J., Schmid, M., Strous, M., Jetten, M. S., & Cord-Ruwisch, R. (2005). Enrichment of Anammox from activated sludge and its application in the CANON process. Microbial Ecology, 49, 236–244.Google Scholar
  130. Tränkler, J., Visvanathan, C., Kuruparan, P. & Tubtimthai, O. (2005). Influence of tropical seasonal variations on landfill leachate characteristics—Results from lysimeter studies. Waste Management, 25(10), 1013–1020.Google Scholar
  131. Trotsenko, Y. A., & Murrell, J. C. (2008). Metabolic aspects of aerobic obligate methanotrophy. Advances in Applied Microbiology, 63, 183–229.Google Scholar
  132. Umar, M., Aziz, H. A., & Yusoff, M. S. (2010). Variability of parameters involved in leachate pollution index and determination of lpi from four landfills in Malaysia. International Journal of Chemical Engineering, 2010, 1–6.Google Scholar
  133. Vadivelu, V. M., Kelle, J., & Yuan, Z. (2007). Effect of free ammonia on the respiration and growth processes of an enriched Nitrobacter culture. Water Research, 41, 826–834.Google Scholar
  134. Van Hulle, S. W., Vandeweyer, H. J., Meesschaert, B. D., Vanrolleghem, P. A., Dejans, P., & Dumoulin, A. (2010). Engineering aspects and practical application of autotrophic nitrogen removal from nitrogen rich streams. Chemical Engineering Journal, 162, 1–20.Google Scholar
  135. van Loosdrecht, M. C. M., & Salem, S. (2006). Biological treatment of sludge digester liquids. Water Science and Technology, 53, 11–20.Google Scholar
  136. Veuillet, F., Lacroix, S., Bausseron, A., Gonidec, E., Ochoa, J., Christensson, M., & Lemaire, R. (2014). Integrated fixed-film activated sludge ANITAMox process—a new perspective for advanced nitrogen removal. Water Science and Technology, 69, 915–922.Google Scholar
  137. Waki, M., Suzuki, K., Osada, T., & Tanaka, Y. (2005). Methane-dependent denitrification by a semi-partitioned reactor supplied separately with methane and oxygen. Bioresource Technology, 96, 921–927.Google Scholar
  138. Wang, H., & Qu, J. (2003). Comparison of two combined bioelectrochemical and sulfur autotrophic denitrification processes for drinking water treatment. Journal of Environmental Science and Health, Part A Environmental Science, 38, 1269–1284.Google Scholar
  139. Wang, Y., Wu, W., Ding, Y., Liu, W., Perera, A., Chen, Y., & Devare, M. (2008). Methane oxidation activity and bacterial community composition in a simulated landfill cover soil is influenced by the growth of Chenopodium album L. Soil Biology and Biochemistry, 40, 2452–2459.Google Scholar
  140. Wang, Z., Peng, Y., Miao, L., Cao, T., Zhang, F., Wang, S., & Han, J. (2016). Continuous-flow combined process of nitritation and anammox for treatment of landfill leachate. Bioresource Technology, 214, 514–519.Google Scholar
  141. Warneke, S., Schipper, L. A., Matiasek, M. G., Scow, K. M., Cameron, S., Bruesewitz, D. A., & McDonald, I. R. (2011). Nitrate removal, communities of denitrifiers and adverse effects in different carbon substrates for use in denitrification beds. Water Research, 45, 5463–5475.Google Scholar
  142. Wett, B. (2007). Development and implementation of a robust deammonification process. Water Science and Technology, 56, 81–88.Google Scholar
  143. Wett, B., Hell, M., Nyhuis, G., Puempel, T., Takacs, I. & Murthy, S. (2010). Syntrophy of aerobic and anaerobic ammonia oxidisers. Water Science and Technology, 61, 1915–1922.Google Scholar
  144. Wu, Y., Zhou, S., Ye, X., Chen, D., Zheng, K., & Qin, F. (2011). Transformation of pollutants in landfill leachate treated by a combined sequence batch reactor, coagulation, Fenton oxidation and biological aerated filter technology. Process Safety and Environment Protection, 89, 112–120.Google Scholar
  145. Wyffels, S., Van Hulle, S. W. H., Boeckx, P., Volcke, E. I. P., Van Cleemput, O., Vanrolleghem, P. A., & Verstraete, W. (2004). Modeling and simulation of oxygen-limited partial nitritation in a membrane-assisted bioreactor (MBR). Biotechnology and Bioengineering, 86, 531–542.Google Scholar
  146. Yang, Q., Peng, Y., Liu, X., Zeng, W., Mino, T., & Satoh, H. (2007). Nitrogen removal via nitrite from municipal wastewater at low temperatures using real-time control to optimize nitrifying communities. Environmental Science & Technology, 41, 8159–8164.Google Scholar
  147. Zainol, N. A., Aziz, H. A., & Yusoff, M. S. (2012). Characterization of leachate from Kuala Sepetang and Kulim landfills: a comparative study. Energy and Environmental Research, 2, 45.Google Scholar
  148. Zainol, N. A., Aziz, H. A., & Ibrahim, N. (2013). Treatment of kulim and kuala sepetang landfills leachates in Malaysia using poly-aluminium chloride (PACl). Research Journal of Chemical Sciences, 3, 606X.Google Scholar
  149. Zhang, L., Li, A., Lu, Y., Yan, L., Zhong, S., & Deng, C. (2009). Characterization and removal of dissolved organic matter (DOM) from landfill leachate rejected by nanofiltration. Waste Management, 29, 1035–1040.Google Scholar
  150. Zhu, J., Wang, Q., Yuan, M., Tan, G. Y., Sun, F., Wang, C., Wu, W., & Lee, P. H. (2016). Microbiology and potential applications of aerobic methane oxidation coupled to denitrification (AME-D) process: a review. Water Research, 90, 203–215.Google Scholar
  151. Zin, M., Shaylinda, N., Abdul Aziz, H., Adlan, M. N., & Ariffin, A. (2012). Characterization of leachate at Matang Landfill Site, Perak, Malaysia. Academic Journal of Science, 1, 317–322.Google Scholar
  152. Zolfaghari, M., Jardak, K., Drogui, P., Brar, S. K., Buelna, G., & Dubé, R. (2016). Landfill leachate treatment by sequential membrane bioreactor and electro-oxidation processes. Journal of Environmental Management, 184, 318–326.Google Scholar
  153. Zouboulis, A. I., Chai, X. L., & Katsoyiannis, I. A. (2004). The application of bioflocculant for the removal of humic acids from stabilized landfill leachates. Journal of Environmental Management, 70, 35–41.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Chemical and Environmental Engineering, Faculty of Science and EngineeringUniversity of Nottingham MalaysiaSemenyihMalaysia
  2. 2.Bioseparation Research Group, Faculty of Science and Engineering, Centre for Food and Bioproduct ProcessingUniversity of Nottingham MalaysiaSemenyihMalaysia
  3. 3.School of Environmental Science and EngineeringIndian Institute of TechnologyKharagpurIndia
  4. 4.Nanotechnology and Catalysis Research Centre (NANOCAT)University of MalayaKuala LumpurMalaysia
  5. 5.Institute of Biological Sciences, Faculty of ScienceUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations