Advertisement

Assessment of heavy metal contamination in surface sediments along the Mediterranean coast of Morocco

  • Mohammed Saddik
  • Ahmed FadiliEmail author
  • Abdelhadi Makan
Article
  • 185 Downloads

Abstract

In this paper, heavy metal contamination in surface sediments along the Mediterranean coast of Morocco was investigated. Determining pollution degree as well as heavy metal origins were the main objectives of this investigation. For this reason, concentrations of nine heavy metals (Cd, Cu, Cr, Ni, Pb, Zn, Hg, Fe, and Mn) were analyzed at ten stations sampled during three different periods. The obtained concentrations showed significant variation between sampling periods, which was controlled by several environmental and chemical processes. According to contamination indices results using pollution load index (PLI), modified contamination degree (mCd), geoaccumulation index (Igeo), enrichment factor (EF), and potential ecological risk index (RI), sampling stations were classified between uncontaminated and strongly contaminated without detecting any intense heavy metal pollution in surface sediment. Likewise, the EF values were comprised between no enrichment and moderate to severe enrichment. According to sediment quality guidelines, the calculated M-ERM-Q indicated that heavy metal mixtures have between 9 and 49% probability for being toxic. This result revealed lowest to medium-low potential of adverse effects to biota populations. Regarding heavy metal origins, multivariate statistical investigation showed that Cd, Cu, Hg, Pb, and Zn are derived mainly from anthropogenic activities, while Fe, Mn, Cr, and Ni were derived from natural sources. Despite Cd is considered as a typical anthropogenic metal, the very low concentrations obtained in this study support the involvement of natural factor in the enrichment with this metal. Therefore, the surface sediments contamination along the Mediterranean coasts of Morocco is particularly caused by a combination of anthropogenic and natural factors. As a result, the study area can be considered as not significantly enriched by human activities.

Keywords

Heavy metal Surface sediment pollution Ecological risk assessment Statistical analysis Contamination origins 

Notes

References

  1. Abrahim, G. M. S., & Parker, R. J. (2008). Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environmental Monitoring and Assessment, 136(1–3), 227–238.Google Scholar
  2. Accornero, A., Gnerre, R., & Manfra, L. (2008). Sediment concentrations of trace metals in the Berre lagoon (France): an assessment of contamination. Archives of Environmental Contamination and Toxicology, 54(3), 372–385.Google Scholar
  3. Alexander, C. R., Smith, R. G., Calder, F. D., Schropp, S. J., & Windom, H. L. (1993). The historical record of metal enrichment in two Florida estuaries. Estuaries, 16, 627–637.Google Scholar
  4. Alomary, A. A., & Belhadj, S. (2007). Determination of heavy metals (Cd, Cr, Cu, Fe, Ni, Pb, Zn) by ICP-OES and their speciation in Algerian Mediterranean Sea sediments after a five-stage sequential extraction procedure. Environmental Monitoring and Assessment, 135(1–3), 265–280.Google Scholar
  5. Alves, S. I. R., Sampaio, F. C., Nadal, M., Schuhmacher, M., Domingo, L. J., & Segura-Muñoz, I. (2014). Metal concentrations in surface water and sediments from Pardo River, Brazil: Human health risks. Environmental Research, 133, 149–155.Google Scholar
  6. Andrieux, J., Fontboté, J. M., & Mattauer, M. (1971). Sur un modèle explicatif de l’arc de Gibraltar. Earth and Planetary Science Letters, 12, 191–198.Google Scholar
  7. Ayadi, N., Aloulou, F., & Bouzid, J. (2015). Assessment of contaminated sediment by phosphate fertilizer industrial waste using pollution indices and statistical techniques in the Gulf of Gabes (Tunisia). Arabian Journal of Geosciences, 8(3), 1755–1767.Google Scholar
  8. Bastami, K. D., Bagheri, H., Haghparast, S., Soltani, F., Hamzehpoor, A., & Bastami, M. D. (2012). Geochemical and geo-statistical assessment of selected heavy metals in the surface sediments of the Gorgan Bay, Iran. Marine Pollution Bulletin, 64(12), 2877–2884.Google Scholar
  9. Bastami, K. D., Neyestani, M. R., Shemirani, F., Soltani, F., Haghparast, S., & Akbari, A. (2015). Heavy metal pollution assessment in relation to sediment properties in the coastal sediments of the southern Caspian Sea. Marine Pollution Bulletin, 92(1–2), 237–243.Google Scholar
  10. Bellucci, L. G., El Moumni, B., Collavini, F., Frignani, M., & Albertazzi, S. (2003). Heavy metals in Morocco Lagoon and river sediments. Journal de Physique IV (Proceedings), 107, 139–142 EDP sciences.Google Scholar
  11. Ben Omar, M. B., Mendiguchía, C., Er-Raioui, H., Marhraoui, M., Lafraoui, G., Oulad-Abdellah, M. K., Oulad-Abdellah, M. G.-V., & Moreno, C. (2015). Distribution of heavy metals in marine sediments of Tetouan coast (North of Morocco): natural and anthropogenic sources. Environmental Earth Sciences, 74(5), 4171–4185.Google Scholar
  12. Birth, G. (2003). A scheme for assessing human impacts on coastal aquatic environments using sediments. In C. D. Woodcoffe & R. A. Furness (Eds.), Coastal GIS (p. 14). Australia: Wollongong University Papers in Center for Maritime Policy.Google Scholar
  13. Bloundi, M. K., Duplay, J., & Quaranta, G. (2009). Heavy metal contamination of coastal lagoon sediments by anthropogenic activities: the case of Nador (East Morocco). Environmental Geology, 56(5), 833–843.Google Scholar
  14. Buatmenard, P., & Chesselet, R. (1979). Variable influence of the atmospheric flux on the trace metal chemistry of oceanic suspended matter. Earth and Planetary Science Letters, 42, 399–411.Google Scholar
  15. Buccolieri, A., Buccolieri, G., Cardellicchio, N., Dell'Atti, A., Di Leo, A., & Maci, A. (2006). Heavy metals in marine sediments of Taranto Gulf (Ionian Sea, southern Italy). Marine Chemistry, 99(1–4), 227–235.Google Scholar
  16. Carman, C. M., Xiang-Dong, L., Gan, Z., Onyx, W. H., & Wai, Y. L. (2007). Trace metal distribution in sediments of the Pearl River Estuary and the surrounding coastal area, South China. Environmental Pollution, 147, 311–323.Google Scholar
  17. Castillo, M. A., Trujillo, I. S., Alonso, E. V., de Torres, A. G., & Pavón, J. C. (2013). Bioavailability of heavy metals in water and sediments from a typical Mediterranean Bay (Málaga Bay, Region of Andalucía, Southern Spain). Marine Pollution Bulletin, 76(1–2), 427–434.Google Scholar
  18. Chakrapani, G. L., & Subramanian, V. (1993). Heavy metals distribution and fractionation in sediments of the Mahanadi River basin, India. Environmental Geology, 22, 80–87.Google Scholar
  19. Chapman, P. M., Wang, F., Janssen, C., Persoone, G., & Allen, H. E. (1998). Ecotoxicology of metals in aquatic sediments: binding and release, bioavailability, risk assessment, and remediation. Canadian Journal of Fisheries and Aquatic Sciences, 55(10), 2221–2243.Google Scholar
  20. Cheggour, M., Chafik, A., Fisher, N. S., & Benbrahim, S. (2005). Metal concentrations in sediments and clams in four Moroccan estuaries. Marine Environmental Research, 59(2), 119–137.Google Scholar
  21. Chen, J. S., Wang, F. Y., Li, X. D., & Song, J. J. (2000). Geographical variations of trace elements in sediments of the major rivers in eastern China. Environmental Geology, 39(12), 1334–1340.Google Scholar
  22. Christophoridis, C., Dedepsidis, D., & Fytianos, K. (2009). Occurrence and distribution of selected heavy metals in the surface sediments of Thermaikos Gulf, N. Greece. Assessment using pollution indicators. Journal of Hazardous Materials, 168, 1082–1091.Google Scholar
  23. Collvin, L. (1985). The effect of copper on growth, food consumption and food conversion of perch Perca fluviatilis L. offered maximal food rations. Aquatic Toxicology, 6(2), 105–113.Google Scholar
  24. de Paula Filho, F. J., Marins, R. V., de Lacerda, L. D., Aguiar, J. E., & Peres, T. F. (2015). Background values for evaluation of heavy metal contamination in sediments in the Parnaíba River Delta estuary, NE/Brazil. Marine Pollution Bulletin, 91(2), 424–428.Google Scholar
  25. Díaz-de Alba, M., Galindo-Riano, M. D., Casanueva-Marenco, M. J., García-Vargas, M., & Kosore, C. M. (2011). Assessment of the metal pollution, potential toxicity and speciation of sediment from Algeciras Bay (South of Spain) using chemometric tools. Journal of Hazardous Materials, 190(1–3), 177–187.Google Scholar
  26. Didon, J., Durand-Delga, M., & Kornprobst, J. (1973). Homologies géologiques entre les deux rives du détroit de Gibraltar. Bulletin de la Societe Geologique de France, 15, 79–105.Google Scholar
  27. Duodu, G. O., Goonetilleke, A., & Ayoko, G. A. (2017). Potential bioavailability assessment, source apportionment and ecological risk of heavy metals in the sediment of Brisbane River estuary, Australia. Marine Pollution Bulletin, 117(1–2), 523–531.Google Scholar
  28. Durand Delga, M., & Fontbote, J. M. 1980. Le cadre structurale de la Méditerranée occidentale: In: Géologie des chaînes alpines issues de la Téthys. 26ème Congr. Géol. Fr. Mém. B.R.G.M. 15, 67–85.Google Scholar
  29. El Bilali, L., Rasmussen, P. E., Hall, G. E. M., & Fortin, D. (2002). Role of sediment composition in trace metal distribution in lake sediments. Applied Geochemistry, 17(9), 1171–1181.Google Scholar
  30. El Nemr, A. M., El Sikaily, A., & Khaled, A. (2007). Total and leachable heavy metals in muddy and sandy sediments of Egyptian coast along Mediterranean Sea. Environmental Monitoring and Assessment, 129(1–3), 151–168.Google Scholar
  31. El Zrelli, R., Courjault-Radé, P., Rabaoui, L., Castet, S., Michel, S., & Bejaoui, N. (2015). Heavy metal contamination and ecological risk assessment in the surface sediments of the coastal area surrounding the industrial complex of Gabes city, Gulf of Gabes, SE Tunisia. Marine Pollution Bulletin, 101(2), 922–929.Google Scholar
  32. Ergin, M., Saydam, C., Baştürk, Ö., Erdem, E., & Yörük, R. (1991). Heavy metal concentrations in surface sediments from the two coastal inlets (Golden Horn Estuary and Izmit Bay) of the northeastern Sea of Marmara. Chemical Geology, 91(3), 269–285.Google Scholar
  33. Er-Raioui, H., Bouzid, S., Marhraoui, M., & Saliot, A. (2009). Hydrocarbon pollution of the Mediterranean coastline of Morocco. Ocean & Coastal Management, 52(2), 124–129.Google Scholar
  34. Feng, H., Jiang, H., Gao, W., Weinstein, M. P., Zhang, Q., Zhang, W., Yu, L., Yuan, D., & Tao, J. (2011). Metal contamination in sediments of the western Bohai Bay and adjacent estuaries, China. Journal of Environmental Management, 92, 1185–1197.Google Scholar
  35. Frémion, F., Bordas, F., Mourier, B., Lenain, J. F., Kestens, T., & Courtin-Nomade, A. (2016). Influence of dams on sediment continuity: a study case of a natural metallic contamination. Science of the Total Environment, 547, 282–294.Google Scholar
  36. Fujita, M., Ide, Y., Sato, D., Kench, P. S., Kuwahara, Y., Yokoki, H., & Kayanne, H. (2014). Heavy metal contamination of coastal lagoon sediments: Fongafale Islet, Funafuti Atoll, Tuvalu. Chemosphere, 95, 628–634.Google Scholar
  37. Gao, X., & Chen, C. T. A. (2012). Heavy metal pollution status in surface sediments of the coastal Bohai Bay. Water Research, 46(6), 1901–1911.Google Scholar
  38. Gaur, V. K., Gupta, S. K., Pandey, S. D., Gopal, K., & Misra, V. (2005). Distribution of heavy metals in sediment and water of River Gomti. Environmental Monitoring and Assessment, 102, 419–433.Google Scholar
  39. Gonzalez, I., Águila, E., & Galán, E. (2007). Partitioning, bioavailability and origin of heavy metals from the Nador Lagoon sediments (Morocco) as a basis for their management. Environmental Geology, 52(8), 1581–1593.Google Scholar
  40. Gueddari, K., Piboule, M., & Amossé, J. (1996). Differentiation of platinum-group elements (PGE) and of gold during partial melting of peridotites in the lherzolitic massifs of the Betico-Rifean range (Ronda and Beni Bousera). Chemical Geology, 134(1–3), 181–197.Google Scholar
  41. Gupta, A., Rai, D. K., Pandey, R. S., & Sharma, B. (2009). Analysis of some heavy metals in the riverine water, sediments and fish from river Ganges at Allahabad. Environmental Monitoring and Assessment, 157(1–4), 449.Google Scholar
  42. Hajjar, Z., Gervilla, F., Essaifi, A., & Wafik, A. (2017). Mineralogical and geochemical features of the alteration processes of magmatic ores in the Beni Bousera ultramafic massif (north Morocco). Journal of African Earth Sciences, 132, 47–63.Google Scholar
  43. Hakanson, L. (1980). An ecological risk index for aquatic pollution control, a sedimentological approach. Water Research, 14, 975–1001.Google Scholar
  44. Holmes, R. (1975). The regional distribution of cadmium in England and Wales. Ph.D. thesis, University of London.Google Scholar
  45. Hortellani, M. A., Sarkis, J. E., Abessa, D., & Sousa, E. C. (2008). Assessment of metallic element contamination in sediments from the Santos-São Vicente estuarine system. Quimica Nova, 31(1), 10–19.Google Scholar
  46. Hussain, R., Khattak, S. A., Shah, T. M., & Ali, L. (2015). Multistatistical approaches for environmental geochemical assessment of pollutants in soils of Gadoon Amazai industrial Estate, Pakistan. Journal of Soils and Sediments, 15, 1119–1129.Google Scholar
  47. Hutton, M. (1983). Sources of cadmium in the environment. Ecotoxicology and Environmental Safety, 7(1), 9–24.Google Scholar
  48. Jamshidi-Zanjani, A., & Saeedi, M. (2013). Metal pollution assessment and multivariate analysis in sediment of Anzali international wetland. Environmental Earth Sciences, 70(4), 1791–1808.Google Scholar
  49. Kaiser, H. F., & Rice, J. (1974). Little jiffy, mark IV. Educational and Psychological Measurement, 34(1), 111–117.Google Scholar
  50. Kalantzi, I., Shimmield, T. M., Pergantis, S. A., Papageorgiou, N., Black, K. D., & Karakassis, I. (2013). Heavy metals, trace elements and sediment geochemistry at four Mediterranean fish farms. Science of the Total Environment, 444, 128–137.Google Scholar
  51. Lahbabi, A., & Anouar, K. (2005). Mandat de l’expert national chargé d’élaborer le plan d’action national dans le cadre du PAS. Ministère de l’aménagement du territoire, de l’eau et de l’environnement. Royaume du Maroc.Google Scholar
  52. Laissaoui, A., Mas, J. L., Hurtado, S., Ziad, N., Villa, M., & Benmansour, M. (2013). Radionuclide activities and metal concentrations in sediments of the Sebou Estuary, NW Morocco, following a flooding event. Environmental Monitoring and Assessment, 185(6), 5019–5029.Google Scholar
  53. Li, H., Kang, X., Li, X., Li, Q., Song, J., Jiao, N., & Zhang, Y. (2017). Heavy metals in surface sediments along the Weihai coast, China: distribution, sources and contamination assessment. Marine Pollution Bulletin, 115(1–2), 551–558.Google Scholar
  54. Long, E. R., & MacDonald, D. D. (1998). Recommended uses of empirically derived, sediment quality guidelines for marine and estuarine ecosystems. Human and Ecological Risk Assessment, 4, 1019–1039.Google Scholar
  55. Long, E. R., MacDonald, D. D., Smith, S. L., & Calder, F. D. (1995). Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental Management, 19, 81–97.Google Scholar
  56. Long, E. R., MacDonald, D. D., Severn, C. G., & Hong, C. B. (2000). Classifying the probabilities of acute toxicity in marine sediments with empirically-derived sediment quality guidelines. Environmental Toxicology and Chemistry, 19, 2598–2601.Google Scholar
  57. MacDonald, D. D., Ingersoll, C. G., & Berger, T. A. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology, 39, 20–31.Google Scholar
  58. Malvandi, H. (2017). Preliminary evaluation of heavy metal contamination in the Zarrin-Gol River sediments, Iran. Marine Pollution Bulletin, 117(1–2), 547–553.Google Scholar
  59. Marrugo-Negrete, J., Pinedo-Hernández, J., & Díez, S. (2017). Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environmental Research, 154, 380–388.Google Scholar
  60. McCready, S., Birch, G. F., & Long, E. R. (2006). Metallic and organic contaminants in sediments of Sydney Harbour, Australia and vicinity—a chemical dataset for evaluating sediment quality guidelines. Environment International, 32, 455–465.Google Scholar
  61. Michard, A., & Chalouan, A. (1978). Présence de l’Orogene varisque dans le socle interne rifo-kabyle (microplaque d’Alboran). Comptes Rendus. Académie des Sciences, 287, 903–906.Google Scholar
  62. Miller, B. S., Pirie, D. J., & Redshaw, C. J. (2000). An assessment of the contamination and toxicity of marine sediments in the Holy Loch, Scotland. Marine Pollution Bulletin, 40(1), 22–35.Google Scholar
  63. Muller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. Geojournal, 2, 108–118.Google Scholar
  64. Neşer, G., Kontas, A., Ünsalan, D., Uluturhan, E., Altay, O., Darılmaz, E., Küçüksezgin, F., Tekoğul, N., & Yercan, F. (2012). Heavy metals contamination levels at the Coast of Aliağa (Turkey) ship recycling zone. Marine Pollution Bulletin, 64(4), 882–887.Google Scholar
  65. Niencheski, L. F., Windom, H. L., & Smith, R. (1994). Distribution of particulate trace metal in Patos Lagoon Estuary (Brazil). Marine Pollution Bulletin, 28(2), 96–102.Google Scholar
  66. Olivier, P. (1984). Evolution de la limite entre zones internes et zones externes dans l'arc de Gibraltar (Maroc-Espagne) (doctoral dissertation).Google Scholar
  67. Pejman, A., Bidhendi, G. N., Ardestani, M., Saeedi, M., & Baghvand, A. (2015). A new index for assessing heavy metals contamination in sediments: a case study. Ecological Indicators, 58, 365–373.Google Scholar
  68. Quevauviller, P., Lavigne, R., & Cortez, L. (1989). Impact of industrial and mine drainage wastes on the heavy-metal distribution in the drainage-basin estuary of the Sado River (Portugal). Environmental Pollution, 59, 267–286.Google Scholar
  69. Rabaoui, L., El Zrelli, R., Mansour, M. B., Balti, R., Mansour, L., Tlig-Zouari, S., & Guerfel, M. (2015). On the relationship between the diversity and structure of benthic macroinvertebrate communities and sediment enrichment with heavy metals in Gabes Gulf, Tunisia. Journal of the Marine Biological Association of the United Kingdom, 95(2), 233–245.Google Scholar
  70. Reimann, C., & Caritat, P. (2005). Distinguishing between natural and anthropogenic sources for elements in the environment: regional geochemical surveys versus enrichment factors. Science of the Total Environment, 337, 91–107.Google Scholar
  71. Rodríguez-Barroso, M. R., García-Morales, J. L., Oviedo, M. C., & Alonso, J. Q. (2010). An assessment of heavy metal contamination in surface sediment using statistical analysis. Environmental Monitoring and Assessment, 163(1–4), 489–501.Google Scholar
  72. Royaume du Maroc. (2014). Haut-commissariat au plan, les résultats de la population l’égale issue du recensement général de la population et de l’habitat (RGPH). Avalable in internet http://www.hcp.ma
  73. Ruiz, F., Abad, M., Olías, M., Galán, E., Gonzalez, I., Aguilá, E., et al. (2006). The present environmental scenario of the Nador lagoon (Morocco). Environmental Research, 102(2), 215–229.Google Scholar
  74. Saddiqui, O. (1988). Tectonique de la remontée du manteau: les peridotites des Beni Bousera et leur enveloppe métamorphique, Rif interne, Maroc (Doctoral dissertation, Université Louis Pasteur (Strasbourg)).Google Scholar
  75. Sakan, S. M., Đorđević, D. S., Manojlović, D. D., & Predrag, P. S. (2009). Assessment of heavy metal pollutants accumulation in the Tisza river sediments. Journal of Environmental Management, 90(11), 3382–3390.Google Scholar
  76. Sakan, S., Dević, G., Relić, D., Anđelković, I., Sakan, N., & Đorđević, D. (2015). Evaluation of sediment contamination with heavy metals: the importance of determining appropriate background content and suitable element for normalization. Environmental Geochemistry and Health, 37(1), 97–113.Google Scholar
  77. Schiff, K. C., & Weisberg, S. B. (1999). Iron as a reference element for determining trace metal enrichment in Southern California coastal shelf sediments. Marine Environmental Research, 48(2), 161–176.Google Scholar
  78. Soliman, N. F., Nasr, S. M., & Okbah, M. A. (2015). Potential ecological risk of heavy metals in sediments from the Mediterranean coast, Egypt. Journal of Environmental Health Science and Engineering, 13(1), 70.Google Scholar
  79. Strbac, S., Grubin, M. K., & Vasić, N. (2018). Importance of background values in assessing the impact of heavy metals in river ecosystems: case study of Tisza River, Serbia. Environmental Geochemistry and Health, 40(4), 1247–1263.Google Scholar
  80. Suresh, G., Sutharsan, P., Ramasamy, V., & Venkatachalapathy, R. (2012). Assessment of spatial distribution and potential ecological risk of the heavy metals in relation to granulometric contents of Veeranam lake sediments, India. Ecotoxicology and Environmental Safety, 84, 117–124.Google Scholar
  81. Taylor, S. R. (1964). Abundance of chemical elements in the continental crust: a new table. Geochimica et Cosmochimica Acta, 28(8), 1273–1285.Google Scholar
  82. Tomlinson, D. L., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer meeresuntersuchungen, 33(1), 566–575.Google Scholar
  83. Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of the earth’s crust. Geological Society of America Bulletin, 72(2), 175–192.Google Scholar
  84. Violintzis, C., Arditsoglou, A., & Voutsa, D. (2009). Elemental composition of suspended particulate matter and sediments in the coastal environment of Thermaikos Bay, Greece: delineating the impact of inland waters and wastewaters. Journal of Hazardous Materials, 166, 1250–1260.Google Scholar
  85. Wang, C., Liu, S., Zhao, Q., Deng, L., & Dong, S. (2012). Spatial variation and contamination assessment of heavy metals in sediments in the Manwan Reservoir, Lancang River. Ecotoxicology and Environmental Safety, 82, 32–39.Google Scholar
  86. Wang, Y., Wei, Y., Guo, P., Pan, J., Wu, Q., & Liu, N. (2016). Distribution variation of heavy metals in maricultural sediments and their enrichment, ecological risk and possible source—a case study from Zhelin bay in Southern China. Marine Pollution Bulletin, 113(1–2), 240–246.Google Scholar
  87. Wang, N., Wang, A., Kong, L., & He, M. (2018). Calculation and application of Sb toxicity coefficient for potential ecological risk assessment. Science of the Total Environment, 610, 167–174.Google Scholar
  88. Zahra, A., Hashmi, M. Z., Malik, R. N., & Ahmed, Z. (2014). Enrichment and geo-accumulation of trace metals and risk assessment of sediments of the Kurang Nallah-feeding tributary of the Rawal Lake Reservoir, Pakistan. Science of the Total Environment, 470–471, 925–933.Google Scholar
  89. Zhang, H., & Shan, B. (2008). Historical records of heavy metal accumulation in sediments and the relationship with agricultural intensification in the Yangtze–Huaihe region, China. Science of the Total Environment, 399(1–3), 113–120.Google Scholar
  90. Zhu, H. N., Yuan, X. Z., Zeng, G. M., Jiang, M., Liang, J., Zhang, c., ... & Jiang, H. W. (2012). Ecological risk assessment of heavy metals in sediments of Xiawan Port based on modified potential ecological risk index. Transactions of Nonferrous Metals Society of China, 22(6), 1470–1477.Google Scholar
  91. Zhu, X., Ji, H., Chen, Y., Qiao, M., & Tang, L. (2013). Assessment and sources of heavy metals in surface sediments of Miyun Reservoir, Beijing. Environmental Monitoring and Assessment, 185(7), 6049–6062.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Team of Water and Environmental Management (G2E), National School of Applied Sciences (ENSAH)Abdelmalek Essaadi UniversityAl HoceimaMorocco

Personalised recommendations