Skip to main content
Log in

Assessment of heavy metal contamination in surface sediments along the Mediterranean coast of Morocco

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In this paper, heavy metal contamination in surface sediments along the Mediterranean coast of Morocco was investigated. Determining pollution degree as well as heavy metal origins were the main objectives of this investigation. For this reason, concentrations of nine heavy metals (Cd, Cu, Cr, Ni, Pb, Zn, Hg, Fe, and Mn) were analyzed at ten stations sampled during three different periods. The obtained concentrations showed significant variation between sampling periods, which was controlled by several environmental and chemical processes. According to contamination indices results using pollution load index (PLI), modified contamination degree (mCd), geoaccumulation index (Igeo), enrichment factor (EF), and potential ecological risk index (RI), sampling stations were classified between uncontaminated and strongly contaminated without detecting any intense heavy metal pollution in surface sediment. Likewise, the EF values were comprised between no enrichment and moderate to severe enrichment. According to sediment quality guidelines, the calculated M-ERM-Q indicated that heavy metal mixtures have between 9 and 49% probability for being toxic. This result revealed lowest to medium-low potential of adverse effects to biota populations. Regarding heavy metal origins, multivariate statistical investigation showed that Cd, Cu, Hg, Pb, and Zn are derived mainly from anthropogenic activities, while Fe, Mn, Cr, and Ni were derived from natural sources. Despite Cd is considered as a typical anthropogenic metal, the very low concentrations obtained in this study support the involvement of natural factor in the enrichment with this metal. Therefore, the surface sediments contamination along the Mediterranean coasts of Morocco is particularly caused by a combination of anthropogenic and natural factors. As a result, the study area can be considered as not significantly enriched by human activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abrahim, G. M. S., & Parker, R. J. (2008). Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environmental Monitoring and Assessment, 136(1–3), 227–238.

    CAS  Google Scholar 

  • Accornero, A., Gnerre, R., & Manfra, L. (2008). Sediment concentrations of trace metals in the Berre lagoon (France): an assessment of contamination. Archives of Environmental Contamination and Toxicology, 54(3), 372–385.

    CAS  Google Scholar 

  • Alexander, C. R., Smith, R. G., Calder, F. D., Schropp, S. J., & Windom, H. L. (1993). The historical record of metal enrichment in two Florida estuaries. Estuaries, 16, 627–637.

    CAS  Google Scholar 

  • Alomary, A. A., & Belhadj, S. (2007). Determination of heavy metals (Cd, Cr, Cu, Fe, Ni, Pb, Zn) by ICP-OES and their speciation in Algerian Mediterranean Sea sediments after a five-stage sequential extraction procedure. Environmental Monitoring and Assessment, 135(1–3), 265–280.

    CAS  Google Scholar 

  • Alves, S. I. R., Sampaio, F. C., Nadal, M., Schuhmacher, M., Domingo, L. J., & Segura-Muñoz, I. (2014). Metal concentrations in surface water and sediments from Pardo River, Brazil: Human health risks. Environmental Research, 133, 149–155.

    CAS  Google Scholar 

  • Andrieux, J., Fontboté, J. M., & Mattauer, M. (1971). Sur un modèle explicatif de l’arc de Gibraltar. Earth and Planetary Science Letters, 12, 191–198.

    Google Scholar 

  • Ayadi, N., Aloulou, F., & Bouzid, J. (2015). Assessment of contaminated sediment by phosphate fertilizer industrial waste using pollution indices and statistical techniques in the Gulf of Gabes (Tunisia). Arabian Journal of Geosciences, 8(3), 1755–1767.

    CAS  Google Scholar 

  • Bastami, K. D., Bagheri, H., Haghparast, S., Soltani, F., Hamzehpoor, A., & Bastami, M. D. (2012). Geochemical and geo-statistical assessment of selected heavy metals in the surface sediments of the Gorgan Bay, Iran. Marine Pollution Bulletin, 64(12), 2877–2884.

    CAS  Google Scholar 

  • Bastami, K. D., Neyestani, M. R., Shemirani, F., Soltani, F., Haghparast, S., & Akbari, A. (2015). Heavy metal pollution assessment in relation to sediment properties in the coastal sediments of the southern Caspian Sea. Marine Pollution Bulletin, 92(1–2), 237–243.

    CAS  Google Scholar 

  • Bellucci, L. G., El Moumni, B., Collavini, F., Frignani, M., & Albertazzi, S. (2003). Heavy metals in Morocco Lagoon and river sediments. Journal de Physique IV (Proceedings), 107, 139–142 EDP sciences.

    CAS  Google Scholar 

  • Ben Omar, M. B., Mendiguchía, C., Er-Raioui, H., Marhraoui, M., Lafraoui, G., Oulad-Abdellah, M. K., Oulad-Abdellah, M. G.-V., & Moreno, C. (2015). Distribution of heavy metals in marine sediments of Tetouan coast (North of Morocco): natural and anthropogenic sources. Environmental Earth Sciences, 74(5), 4171–4185.

    CAS  Google Scholar 

  • Birth, G. (2003). A scheme for assessing human impacts on coastal aquatic environments using sediments. In C. D. Woodcoffe & R. A. Furness (Eds.), Coastal GIS (p. 14). Australia: Wollongong University Papers in Center for Maritime Policy.

    Google Scholar 

  • Bloundi, M. K., Duplay, J., & Quaranta, G. (2009). Heavy metal contamination of coastal lagoon sediments by anthropogenic activities: the case of Nador (East Morocco). Environmental Geology, 56(5), 833–843.

    CAS  Google Scholar 

  • Buatmenard, P., & Chesselet, R. (1979). Variable influence of the atmospheric flux on the trace metal chemistry of oceanic suspended matter. Earth and Planetary Science Letters, 42, 399–411.

    CAS  Google Scholar 

  • Buccolieri, A., Buccolieri, G., Cardellicchio, N., Dell'Atti, A., Di Leo, A., & Maci, A. (2006). Heavy metals in marine sediments of Taranto Gulf (Ionian Sea, southern Italy). Marine Chemistry, 99(1–4), 227–235.

    CAS  Google Scholar 

  • Carman, C. M., Xiang-Dong, L., Gan, Z., Onyx, W. H., & Wai, Y. L. (2007). Trace metal distribution in sediments of the Pearl River Estuary and the surrounding coastal area, South China. Environmental Pollution, 147, 311–323.

    Google Scholar 

  • Castillo, M. A., Trujillo, I. S., Alonso, E. V., de Torres, A. G., & Pavón, J. C. (2013). Bioavailability of heavy metals in water and sediments from a typical Mediterranean Bay (Málaga Bay, Region of Andalucía, Southern Spain). Marine Pollution Bulletin, 76(1–2), 427–434.

    Google Scholar 

  • Chakrapani, G. L., & Subramanian, V. (1993). Heavy metals distribution and fractionation in sediments of the Mahanadi River basin, India. Environmental Geology, 22, 80–87.

    CAS  Google Scholar 

  • Chapman, P. M., Wang, F., Janssen, C., Persoone, G., & Allen, H. E. (1998). Ecotoxicology of metals in aquatic sediments: binding and release, bioavailability, risk assessment, and remediation. Canadian Journal of Fisheries and Aquatic Sciences, 55(10), 2221–2243.

    CAS  Google Scholar 

  • Cheggour, M., Chafik, A., Fisher, N. S., & Benbrahim, S. (2005). Metal concentrations in sediments and clams in four Moroccan estuaries. Marine Environmental Research, 59(2), 119–137.

    CAS  Google Scholar 

  • Chen, J. S., Wang, F. Y., Li, X. D., & Song, J. J. (2000). Geographical variations of trace elements in sediments of the major rivers in eastern China. Environmental Geology, 39(12), 1334–1340.

    CAS  Google Scholar 

  • Christophoridis, C., Dedepsidis, D., & Fytianos, K. (2009). Occurrence and distribution of selected heavy metals in the surface sediments of Thermaikos Gulf, N. Greece. Assessment using pollution indicators. Journal of Hazardous Materials, 168, 1082–1091.

    CAS  Google Scholar 

  • Collvin, L. (1985). The effect of copper on growth, food consumption and food conversion of perch Perca fluviatilis L. offered maximal food rations. Aquatic Toxicology, 6(2), 105–113.

    CAS  Google Scholar 

  • de Paula Filho, F. J., Marins, R. V., de Lacerda, L. D., Aguiar, J. E., & Peres, T. F. (2015). Background values for evaluation of heavy metal contamination in sediments in the Parnaíba River Delta estuary, NE/Brazil. Marine Pollution Bulletin, 91(2), 424–428.

    Google Scholar 

  • Díaz-de Alba, M., Galindo-Riano, M. D., Casanueva-Marenco, M. J., García-Vargas, M., & Kosore, C. M. (2011). Assessment of the metal pollution, potential toxicity and speciation of sediment from Algeciras Bay (South of Spain) using chemometric tools. Journal of Hazardous Materials, 190(1–3), 177–187.

    Google Scholar 

  • Didon, J., Durand-Delga, M., & Kornprobst, J. (1973). Homologies géologiques entre les deux rives du détroit de Gibraltar. Bulletin de la Societe Geologique de France, 15, 79–105.

    Google Scholar 

  • Duodu, G. O., Goonetilleke, A., & Ayoko, G. A. (2017). Potential bioavailability assessment, source apportionment and ecological risk of heavy metals in the sediment of Brisbane River estuary, Australia. Marine Pollution Bulletin, 117(1–2), 523–531.

    CAS  Google Scholar 

  • Durand Delga, M., & Fontbote, J. M. 1980. Le cadre structurale de la Méditerranée occidentale: In: Géologie des chaînes alpines issues de la Téthys. 26ème Congr. Géol. Fr. Mém. B.R.G.M. 15, 67–85.

  • El Bilali, L., Rasmussen, P. E., Hall, G. E. M., & Fortin, D. (2002). Role of sediment composition in trace metal distribution in lake sediments. Applied Geochemistry, 17(9), 1171–1181.

    Google Scholar 

  • El Nemr, A. M., El Sikaily, A., & Khaled, A. (2007). Total and leachable heavy metals in muddy and sandy sediments of Egyptian coast along Mediterranean Sea. Environmental Monitoring and Assessment, 129(1–3), 151–168.

    Google Scholar 

  • El Zrelli, R., Courjault-Radé, P., Rabaoui, L., Castet, S., Michel, S., & Bejaoui, N. (2015). Heavy metal contamination and ecological risk assessment in the surface sediments of the coastal area surrounding the industrial complex of Gabes city, Gulf of Gabes, SE Tunisia. Marine Pollution Bulletin, 101(2), 922–929.

    Google Scholar 

  • Ergin, M., Saydam, C., Baştürk, Ö., Erdem, E., & Yörük, R. (1991). Heavy metal concentrations in surface sediments from the two coastal inlets (Golden Horn Estuary and Izmit Bay) of the northeastern Sea of Marmara. Chemical Geology, 91(3), 269–285.

    CAS  Google Scholar 

  • Er-Raioui, H., Bouzid, S., Marhraoui, M., & Saliot, A. (2009). Hydrocarbon pollution of the Mediterranean coastline of Morocco. Ocean & Coastal Management, 52(2), 124–129.

    Google Scholar 

  • Feng, H., Jiang, H., Gao, W., Weinstein, M. P., Zhang, Q., Zhang, W., Yu, L., Yuan, D., & Tao, J. (2011). Metal contamination in sediments of the western Bohai Bay and adjacent estuaries, China. Journal of Environmental Management, 92, 1185–1197.

    CAS  Google Scholar 

  • Frémion, F., Bordas, F., Mourier, B., Lenain, J. F., Kestens, T., & Courtin-Nomade, A. (2016). Influence of dams on sediment continuity: a study case of a natural metallic contamination. Science of the Total Environment, 547, 282–294.

    Google Scholar 

  • Fujita, M., Ide, Y., Sato, D., Kench, P. S., Kuwahara, Y., Yokoki, H., & Kayanne, H. (2014). Heavy metal contamination of coastal lagoon sediments: Fongafale Islet, Funafuti Atoll, Tuvalu. Chemosphere, 95, 628–634.

    CAS  Google Scholar 

  • Gao, X., & Chen, C. T. A. (2012). Heavy metal pollution status in surface sediments of the coastal Bohai Bay. Water Research, 46(6), 1901–1911.

    CAS  Google Scholar 

  • Gaur, V. K., Gupta, S. K., Pandey, S. D., Gopal, K., & Misra, V. (2005). Distribution of heavy metals in sediment and water of River Gomti. Environmental Monitoring and Assessment, 102, 419–433.

    CAS  Google Scholar 

  • Gonzalez, I., Águila, E., & Galán, E. (2007). Partitioning, bioavailability and origin of heavy metals from the Nador Lagoon sediments (Morocco) as a basis for their management. Environmental Geology, 52(8), 1581–1593.

    CAS  Google Scholar 

  • Gueddari, K., Piboule, M., & Amossé, J. (1996). Differentiation of platinum-group elements (PGE) and of gold during partial melting of peridotites in the lherzolitic massifs of the Betico-Rifean range (Ronda and Beni Bousera). Chemical Geology, 134(1–3), 181–197.

    CAS  Google Scholar 

  • Gupta, A., Rai, D. K., Pandey, R. S., & Sharma, B. (2009). Analysis of some heavy metals in the riverine water, sediments and fish from river Ganges at Allahabad. Environmental Monitoring and Assessment, 157(1–4), 449.

    CAS  Google Scholar 

  • Hajjar, Z., Gervilla, F., Essaifi, A., & Wafik, A. (2017). Mineralogical and geochemical features of the alteration processes of magmatic ores in the Beni Bousera ultramafic massif (north Morocco). Journal of African Earth Sciences, 132, 47–63.

    CAS  Google Scholar 

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control, a sedimentological approach. Water Research, 14, 975–1001.

    Google Scholar 

  • Holmes, R. (1975). The regional distribution of cadmium in England and Wales. Ph.D. thesis, University of London.

  • Hortellani, M. A., Sarkis, J. E., Abessa, D., & Sousa, E. C. (2008). Assessment of metallic element contamination in sediments from the Santos-São Vicente estuarine system. Quimica Nova, 31(1), 10–19.

    CAS  Google Scholar 

  • Hussain, R., Khattak, S. A., Shah, T. M., & Ali, L. (2015). Multistatistical approaches for environmental geochemical assessment of pollutants in soils of Gadoon Amazai industrial Estate, Pakistan. Journal of Soils and Sediments, 15, 1119–1129.

    CAS  Google Scholar 

  • Hutton, M. (1983). Sources of cadmium in the environment. Ecotoxicology and Environmental Safety, 7(1), 9–24.

    CAS  Google Scholar 

  • Jamshidi-Zanjani, A., & Saeedi, M. (2013). Metal pollution assessment and multivariate analysis in sediment of Anzali international wetland. Environmental Earth Sciences, 70(4), 1791–1808.

    CAS  Google Scholar 

  • Kaiser, H. F., & Rice, J. (1974). Little jiffy, mark IV. Educational and Psychological Measurement, 34(1), 111–117.

    Google Scholar 

  • Kalantzi, I., Shimmield, T. M., Pergantis, S. A., Papageorgiou, N., Black, K. D., & Karakassis, I. (2013). Heavy metals, trace elements and sediment geochemistry at four Mediterranean fish farms. Science of the Total Environment, 444, 128–137.

    CAS  Google Scholar 

  • Lahbabi, A., & Anouar, K. (2005). Mandat de l’expert national chargé d’élaborer le plan d’action national dans le cadre du PAS. Ministère de l’aménagement du territoire, de l’eau et de l’environnement. Royaume du Maroc.

  • Laissaoui, A., Mas, J. L., Hurtado, S., Ziad, N., Villa, M., & Benmansour, M. (2013). Radionuclide activities and metal concentrations in sediments of the Sebou Estuary, NW Morocco, following a flooding event. Environmental Monitoring and Assessment, 185(6), 5019–5029.

    CAS  Google Scholar 

  • Li, H., Kang, X., Li, X., Li, Q., Song, J., Jiao, N., & Zhang, Y. (2017). Heavy metals in surface sediments along the Weihai coast, China: distribution, sources and contamination assessment. Marine Pollution Bulletin, 115(1–2), 551–558.

    CAS  Google Scholar 

  • Long, E. R., & MacDonald, D. D. (1998). Recommended uses of empirically derived, sediment quality guidelines for marine and estuarine ecosystems. Human and Ecological Risk Assessment, 4, 1019–1039.

    Google Scholar 

  • Long, E. R., MacDonald, D. D., Smith, S. L., & Calder, F. D. (1995). Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental Management, 19, 81–97.

    Google Scholar 

  • Long, E. R., MacDonald, D. D., Severn, C. G., & Hong, C. B. (2000). Classifying the probabilities of acute toxicity in marine sediments with empirically-derived sediment quality guidelines. Environmental Toxicology and Chemistry, 19, 2598–2601.

    CAS  Google Scholar 

  • MacDonald, D. D., Ingersoll, C. G., & Berger, T. A. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology, 39, 20–31.

    CAS  Google Scholar 

  • Malvandi, H. (2017). Preliminary evaluation of heavy metal contamination in the Zarrin-Gol River sediments, Iran. Marine Pollution Bulletin, 117(1–2), 547–553.

    CAS  Google Scholar 

  • Marrugo-Negrete, J., Pinedo-Hernández, J., & Díez, S. (2017). Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environmental Research, 154, 380–388.

    CAS  Google Scholar 

  • McCready, S., Birch, G. F., & Long, E. R. (2006). Metallic and organic contaminants in sediments of Sydney Harbour, Australia and vicinity—a chemical dataset for evaluating sediment quality guidelines. Environment International, 32, 455–465.

    Google Scholar 

  • Michard, A., & Chalouan, A. (1978). Présence de l’Orogene varisque dans le socle interne rifo-kabyle (microplaque d’Alboran). Comptes Rendus. Académie des Sciences, 287, 903–906.

    CAS  Google Scholar 

  • Miller, B. S., Pirie, D. J., & Redshaw, C. J. (2000). An assessment of the contamination and toxicity of marine sediments in the Holy Loch, Scotland. Marine Pollution Bulletin, 40(1), 22–35.

    CAS  Google Scholar 

  • Muller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. Geojournal, 2, 108–118.

    Google Scholar 

  • Neşer, G., Kontas, A., Ünsalan, D., Uluturhan, E., Altay, O., Darılmaz, E., Küçüksezgin, F., Tekoğul, N., & Yercan, F. (2012). Heavy metals contamination levels at the Coast of Aliağa (Turkey) ship recycling zone. Marine Pollution Bulletin, 64(4), 882–887.

    Google Scholar 

  • Niencheski, L. F., Windom, H. L., & Smith, R. (1994). Distribution of particulate trace metal in Patos Lagoon Estuary (Brazil). Marine Pollution Bulletin, 28(2), 96–102.

    CAS  Google Scholar 

  • Olivier, P. (1984). Evolution de la limite entre zones internes et zones externes dans l'arc de Gibraltar (Maroc-Espagne) (doctoral dissertation).

  • Pejman, A., Bidhendi, G. N., Ardestani, M., Saeedi, M., & Baghvand, A. (2015). A new index for assessing heavy metals contamination in sediments: a case study. Ecological Indicators, 58, 365–373.

    CAS  Google Scholar 

  • Quevauviller, P., Lavigne, R., & Cortez, L. (1989). Impact of industrial and mine drainage wastes on the heavy-metal distribution in the drainage-basin estuary of the Sado River (Portugal). Environmental Pollution, 59, 267–286.

    CAS  Google Scholar 

  • Rabaoui, L., El Zrelli, R., Mansour, M. B., Balti, R., Mansour, L., Tlig-Zouari, S., & Guerfel, M. (2015). On the relationship between the diversity and structure of benthic macroinvertebrate communities and sediment enrichment with heavy metals in Gabes Gulf, Tunisia. Journal of the Marine Biological Association of the United Kingdom, 95(2), 233–245.

    Google Scholar 

  • Reimann, C., & Caritat, P. (2005). Distinguishing between natural and anthropogenic sources for elements in the environment: regional geochemical surveys versus enrichment factors. Science of the Total Environment, 337, 91–107.

    CAS  Google Scholar 

  • Rodríguez-Barroso, M. R., García-Morales, J. L., Oviedo, M. C., & Alonso, J. Q. (2010). An assessment of heavy metal contamination in surface sediment using statistical analysis. Environmental Monitoring and Assessment, 163(1–4), 489–501.

    Google Scholar 

  • Royaume du Maroc. (2014). Haut-commissariat au plan, les résultats de la population l’égale issue du recensement général de la population et de l’habitat (RGPH). Avalable in internet http://www.hcp.ma

  • Ruiz, F., Abad, M., Olías, M., Galán, E., Gonzalez, I., Aguilá, E., et al. (2006). The present environmental scenario of the Nador lagoon (Morocco). Environmental Research, 102(2), 215–229.

    CAS  Google Scholar 

  • Saddiqui, O. (1988). Tectonique de la remontée du manteau: les peridotites des Beni Bousera et leur enveloppe métamorphique, Rif interne, Maroc (Doctoral dissertation, Université Louis Pasteur (Strasbourg)).

  • Sakan, S. M., Đorđević, D. S., Manojlović, D. D., & Predrag, P. S. (2009). Assessment of heavy metal pollutants accumulation in the Tisza river sediments. Journal of Environmental Management, 90(11), 3382–3390.

    CAS  Google Scholar 

  • Sakan, S., Dević, G., Relić, D., Anđelković, I., Sakan, N., & Đorđević, D. (2015). Evaluation of sediment contamination with heavy metals: the importance of determining appropriate background content and suitable element for normalization. Environmental Geochemistry and Health, 37(1), 97–113.

    CAS  Google Scholar 

  • Schiff, K. C., & Weisberg, S. B. (1999). Iron as a reference element for determining trace metal enrichment in Southern California coastal shelf sediments. Marine Environmental Research, 48(2), 161–176.

    CAS  Google Scholar 

  • Soliman, N. F., Nasr, S. M., & Okbah, M. A. (2015). Potential ecological risk of heavy metals in sediments from the Mediterranean coast, Egypt. Journal of Environmental Health Science and Engineering, 13(1), 70.

    Google Scholar 

  • Strbac, S., Grubin, M. K., & Vasić, N. (2018). Importance of background values in assessing the impact of heavy metals in river ecosystems: case study of Tisza River, Serbia. Environmental Geochemistry and Health, 40(4), 1247–1263.

    CAS  Google Scholar 

  • Suresh, G., Sutharsan, P., Ramasamy, V., & Venkatachalapathy, R. (2012). Assessment of spatial distribution and potential ecological risk of the heavy metals in relation to granulometric contents of Veeranam lake sediments, India. Ecotoxicology and Environmental Safety, 84, 117–124.

    CAS  Google Scholar 

  • Taylor, S. R. (1964). Abundance of chemical elements in the continental crust: a new table. Geochimica et Cosmochimica Acta, 28(8), 1273–1285.

    CAS  Google Scholar 

  • Tomlinson, D. L., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer meeresuntersuchungen, 33(1), 566–575.

    Google Scholar 

  • Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of the earth’s crust. Geological Society of America Bulletin, 72(2), 175–192.

    CAS  Google Scholar 

  • Violintzis, C., Arditsoglou, A., & Voutsa, D. (2009). Elemental composition of suspended particulate matter and sediments in the coastal environment of Thermaikos Bay, Greece: delineating the impact of inland waters and wastewaters. Journal of Hazardous Materials, 166, 1250–1260.

    CAS  Google Scholar 

  • Wang, C., Liu, S., Zhao, Q., Deng, L., & Dong, S. (2012). Spatial variation and contamination assessment of heavy metals in sediments in the Manwan Reservoir, Lancang River. Ecotoxicology and Environmental Safety, 82, 32–39.

    CAS  Google Scholar 

  • Wang, Y., Wei, Y., Guo, P., Pan, J., Wu, Q., & Liu, N. (2016). Distribution variation of heavy metals in maricultural sediments and their enrichment, ecological risk and possible source—a case study from Zhelin bay in Southern China. Marine Pollution Bulletin, 113(1–2), 240–246.

    CAS  Google Scholar 

  • Wang, N., Wang, A., Kong, L., & He, M. (2018). Calculation and application of Sb toxicity coefficient for potential ecological risk assessment. Science of the Total Environment, 610, 167–174.

    Google Scholar 

  • Zahra, A., Hashmi, M. Z., Malik, R. N., & Ahmed, Z. (2014). Enrichment and geo-accumulation of trace metals and risk assessment of sediments of the Kurang Nallah-feeding tributary of the Rawal Lake Reservoir, Pakistan. Science of the Total Environment, 470–471, 925–933.

    Google Scholar 

  • Zhang, H., & Shan, B. (2008). Historical records of heavy metal accumulation in sediments and the relationship with agricultural intensification in the Yangtze–Huaihe region, China. Science of the Total Environment, 399(1–3), 113–120.

    CAS  Google Scholar 

  • Zhu, H. N., Yuan, X. Z., Zeng, G. M., Jiang, M., Liang, J., Zhang, c., ... & Jiang, H. W. (2012). Ecological risk assessment of heavy metals in sediments of Xiawan Port based on modified potential ecological risk index. Transactions of Nonferrous Metals Society of China, 22(6), 1470–1477.

  • Zhu, X., Ji, H., Chen, Y., Qiao, M., & Tang, L. (2013). Assessment and sources of heavy metals in surface sediments of Miyun Reservoir, Beijing. Environmental Monitoring and Assessment, 185(7), 6049–6062.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Fadili.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saddik, M., Fadili, A. & Makan, A. Assessment of heavy metal contamination in surface sediments along the Mediterranean coast of Morocco. Environ Monit Assess 191, 197 (2019). https://doi.org/10.1007/s10661-019-7332-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7332-4

Keywords

Navigation