Skip to main content

Advertisement

Log in

Spatio-temporal simulation and prediction of land-use change using conventional and machine learning models: a review

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Spatio-temporal land-use change modeling, simulation, and prediction have become one of the critical issues in the last three decades due to uncertainty, structure, flexibility, accuracy, the ability for improvement, and the capability for integration of available models. Therefore, many types of models such as dynamic, statistical, and machine learning (ML) models have been used in the geographic information system (GIS) environment to fulfill the high-performance requirements of land-use modeling. This paper provides a literature review on models for modeling, simulating, and predicting land-use change to determine the best approach that can realistically simulate land-use changes. Therefore, the general characteristics of conventional and ML models for land-use change are described, and the different techniques used in the design of these models are classified. The strengths and weaknesses of the various dynamic, statistical, and ML models are determined according to the analysis and discussion of the characteristics of these models. The results of the review confirm that ML models are the most powerful models for simulating land-use change because they can include all driving forces of land-use change in the simulation process and simulate linear and non-linear phenomena, which dynamic models and statistical models are unable to do. However, ML models also have limitations. For instance, some ML models are complex, the simulation rules cannot be changed, and it is difficult to understand how ML models work in a system. However, this can be solved via the use of programming languages such as Python, which in turn improve the simulation capabilities of the ML models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdikan, S., Sanli, F., Ustuner, M., & Calò, F. (2016). Land cover mapping using Sentinel-1 SAR data. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 41, 757.

    Google Scholar 

  • Abdullahi, S., & Pradhan, B. (2016). Sustainable brownfields land use change modeling using GIS-based weights-of-evidence approach. Applied Spatial Analysis and Policy, 9(1), 21–38.

    Google Scholar 

  • Aburas, M. M., Ho, Y. M., Ramli, M. F., & Ash’aari, Z. H. (2016). The simulation and prediction of spatio-temporal urban growth trends using cellular automata models: a review. International Journal of Applied Earth Observation and Geoinformation, 52, 380–389.

    Google Scholar 

  • Aburas, M. M., Abdullah, S. H., Ramli, M. F., & Ash’aari, Z. H. (2017a). Measuring and mapping urban growth patterns using remote sensing and GIS techniques. Pertanika Journal of Scholarly Research Reviews, 3(1), 55–69.

  • Aburas, M. M., Ho, Y. M., Ramli, M. F., & Ash’aari, Z. H. (2017b). Improving the capability of an integrated CA-Markov model to simulate spatio-temporal urban growth trends using an analytical hierarchy process and frequency ratio. International Journal of Applied Earth Observation and Geoinformation, 59(Supplement C), 65–78. https://doi.org/10.1016/j.jag.2017.03.006.

    Article  Google Scholar 

  • Aburas, M. M., Ho, Y. M., Ramli, M. F., & Ash’aari, Z. H. (2018). Monitoring and assessment of urban growth patterns using spatio-temporal built-up area analysis. Environmental Monitoring and Assessment, 190(3), 156.

    Google Scholar 

  • Afifi, A. A., Elsemary, M., & Wahab, M. (2013). Urban sprawl of greater Cairo and its impact on the agricultural land using remote sensing and digital soil map. Journal of Applied Sciences Research, 9(8), 5159–5167.

    Google Scholar 

  • Aithal, B. H., & Ramachandra, T. V. (2016). Visualization of urban growth pattern in Chennai using geoinformatics and spatial metrics. Journal of the Indian Society of Remote Sensing, 44(4), 617–633.

  • Aithal, B. H., & Sanna, D. D. (2012). Insights to urban dynamics through landscape spatial pattern analysis. International Journal of Applied Earth Observation and Geoinformation, 18, 329–343.

    Google Scholar 

  • Al-Ahmadi, K., See, L., Heppenstall, A., & Hogg, J. (2009). Calibration of a fuzzy cellular automata model of urban dynamics in Saudi Arabia. Ecological Complexity, 6(2), 80–101.

    Google Scholar 

  • Alghais, N., & Pullar, D. (2018). Modelling future impacts of urban development in Kuwait with the use of ABM and GIS. Transactions in GIS, 22(1), 20–42.

    Google Scholar 

  • Alkan, M., Oruc, M., Yildirim, Y., Seker, D., & Jacobsen, K. (2013). Monitoring spatial and temporal land use/cover changes; a case study in Western Black Sea Region of Turkey. Journal of the Indian Society of Remote Sensing, 41(3), 587–596.

    Google Scholar 

  • Almeida, C. d., Gleriani, J., Castejon, E. F., & Soares-Filho, B. (2008). Using neural networks and cellular automata for modelling intra-urban land-use dynamics. International Journal of Geographical Information Science, 22(9), 943–963.

    Google Scholar 

  • Alphan, H., & Güvensoy, L. (2016). Detecting coastal urbanization and land use change in Southern Turkey. Journal of Environmental Engineering and Landscape Management, 24(2), 97–107.

    Google Scholar 

  • Al-shalabi, M., Billa, L., Pradhan, B., Mansor, S., & Al-Sharif, A. A. (2013). Modelling urban growth evolution and land-use changes using GIS based cellular automata and SLEUTH models: the case of Sana’a metropolitan city, Yemen. Environmental Earth Sciences, 70(1), 425–437.

    Google Scholar 

  • Alsharif, A. A., & Pradhan, B. (2014). Urban sprawl analysis of Tripoli metropolitan city (Libya) using remote sensing data and multivariate logistic regression model. Journal of the Indian Society of Remote Sensing, 42(1), 149–163.

    Google Scholar 

  • Alsharif, A. A., Pradhan, B., Mansor, S., & Shafri, H. Z. M. (2015). Urban expansion assessment by using remotely sensed data and the relative Shannon entropy model in GIS: a case study of Tripoli, Libya. Theoretical and Empirical Researches in Urban Management, 10(1), 55.

    Google Scholar 

  • Al-sharif, A. A., & Pradhan, B. (2014). Monitoring and predicting land use change in Tripoli Metropolitan City using an integrated Markov chain and cellular automata models in GIS. Arabian Journal of Geosciences, 7(10), 4291–4301.

  • Al-sharif, A. A., & Pradhan, B. (2015). Spatio-temporal prediction of urban expansion using bivariate statistical models: assessment of the efficacy of evidential belief functions and frequency ratio models. Applied Spatial Analysis and Policy, 9(2), 213–231.

  • Al-sharif, A. A., Pradhan, B., Shafri, H. Z. M., & Mansor, S. (2013). Spatio-temporal analysis of urban and population growths in Tripoli using remotely sensed data and GIS. Indian Journal of Science and Technology, 6(8), 5134–5142.

    Google Scholar 

  • Amuti, T., & Xinguo, L. (2012). Land cover change detection in oasis of Hotan River Basin in northwestern China. In Future Control and Automation (pp. 45–51). Berlin: Springer.

    Google Scholar 

  • Araya, Y. H., & Cabral, P. (2010). Analysis and modeling of urban land cover change in Setúbal and Sesimbra, Portugal. Remote Sensing, 2(6), 1549–1563.

    Google Scholar 

  • Arsanjani, J. J., Helbich, M., & de Noronha Vaz, E. (2013a). Spatiotemporal simulation of urban growth patterns using agent-based modeling: the case of Tehran. Cities, 32, 33–42.

    Google Scholar 

  • Arsanjani, J. J., Helbich, M., Kainz, W., & Boloorani, A. D. (2013b). Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. International Journal of Applied Earth Observation and Geoinformation, 21, 265–275.

    Google Scholar 

  • Bagheri Bodaghabadi, M., Moghimi, A., Navidi, M., & Ebrahimi Meymand, F. (2018). Modeling of yield and rating of land characteristics for corn based on artificial neural network and regression models in southern Iran. Desert, 23(1), 85–95.

    Google Scholar 

  • Ballestores, F., Jr., & Qiu, Z. (2012). An integrated parcel-based land use change model using cellular automata and decision tree. Proceedings of the International Academy of Ecology and Environmental Sciences, 2(2), 53.

    Google Scholar 

  • Bhaskaran, S., Paramananda, S., & Ramnarayan, M. (2010). Per-pixel and object-oriented classification methods for mapping urban features using Ikonos satellite data. Applied Geography, 30(4), 650–665.

    Google Scholar 

  • Bhatta, B., Saraswati, S., & Bandyopadhyay, D. (2010). Quantifying the degree-of-freedom, degree-of-sprawl, and degree-of-goodness of urban growth from remote sensing data. Applied Geography, 30(1), 96–111.

    Google Scholar 

  • Bihamta, N., Soffianian, A., Fakheran, S., & Gholamalifard, M. (2014). Using the SLEUTH urban growth model to simulate future urban expansion of the Isfahan metropolitan area, Iran. Journal of the Indian Society of Remote Sensing, 43(2), 407–414.

  • Bischof, H., Schneider, W., & Pinz, A. J. (1992). Multispectral classification of Landsat-images using neural networks. IEEE Transactions on Geoscience and Remote Sensing, 30(3), 482–490.

    Google Scholar 

  • Bozorgi, M., Nejadkoorki, F., & Mousavi, M. B. (2018). Land surface temperature estimating in urbanized landscapes using artificial neural networks. Environmental Monitoring and Assessment, 190(4), 250.

    Google Scholar 

  • Chakma, S. (2014). Analysis of urban development suitability. In Dhaka Megacity (pp. 147–161). Berlin: Springer.

    Google Scholar 

  • Chen, Y., Li, X., Liu, X., Huang, H., & Ma, S. (2019). Simulating urban growth boundaries using a patch-based cellular automaton with economic and ecological constraints. International Journal of Geographical Information Science, 33(1), 55–80.

    Google Scholar 

  • Clark, D. (1982). Urban geography: an introductory guide. Didcot: Taylor & Francis.

    Google Scholar 

  • del Mar López, T., Aide, T. M., & Thomlinson, J. R. (2001). Urban expansion and the loss of prime agricultural lands in Puerto Rico. Ambio: a Journal of the Human environment, 30(1), 49–55.

  • Deng, J. S., Wang, K., Hong, Y., & Qi, J. G. (2009). Spatio-temporal dynamics and evolution of land use change and landscape pattern in response to rapid urbanization. Landscape and Urban Planning, 92(3), 187–198.

    Google Scholar 

  • Dewan, A. M., & Corner, R. J. (2014). Spatiotemporal analysis of urban growth, sprawl and structure. In Dhaka Megacity (pp. 99–121). Berlin: Springer.

    Google Scholar 

  • Dewan, A. M., & Yamaguchi, Y. (2009a). Land use and land cover change in greater Dhaka, Bangladesh: using remote sensing to promote sustainable urbanization. Applied Geography, 29(3), 390–401.

    Google Scholar 

  • Dewan, A. M., & Yamaguchi, Y. (2009b). Using remote sensing and GIS to detect and monitor land use and land cover change in Dhaka metropolitan of Bangladesh during 1960–2005. Environmental Monitoring and Assessment, 150(1–4), 237–249.

    Google Scholar 

  • Dixon, B., & Candade, N. (2008). Multispectral landuse classification using neural networks and support vector machines: one or the other, or both? International Journal of Remote Sensing, 29(4), 1185–1206.

    Google Scholar 

  • Doelman, J. C., Stehfest, E., Tabeau, A., van Meijl, H., Lassaletta, L., Gernaat, D. E. H. J., et al. (2018). Exploring SSP land-use dynamics using the IMAGE model: regional and gridded scenarios of land-use change and land-based climate change mitigation. Global Environmental Change, 48, 119–135. https://doi.org/10.1016/j.gloenvcha.2017.11.014.

    Article  Google Scholar 

  • Espindola, G. M., Costa Carneiro, E. L. N., & Façanha, A. C. (2017). Four decades of urban sprawl and population growth in Teresina, Brazil. Applied Geography, 79, 73–83.

    Google Scholar 

  • Estel, S., Kuemmerle, T., Alcántara, C., Levers, C., Prishchepov, A., & Hostert, P. (2015). Mapping farmland abandonment and recultivation across Europe using MODIS NDVI time series. Remote Sensing of Environment, 163, 312–325.

    Google Scholar 

  • Fan, F., Wang, Y., & Wang, Z. (2008). Temporal and spatial change detecting (1998–2003) and predicting of land use and land cover in Core corridor of Pearl River Delta (China) by using TM and ETM+ images. Environmental Monitoring and Assessment, 137(1–3), 127–147.

    Google Scholar 

  • Feng, Y., Liu, Y., & Batty, M. (2016). Modeling urban growth with GIS based cellular automata and least squares SVM rules: a case study in Qingpu–Songjiang area of Shanghai, China. Stochastic Environmental Research and Risk Assessment, 30(5), 1387–1400.

    Google Scholar 

  • Grekousis, G., Manetos, P., & Photis, Y. N. (2013). Modeling urban evolution using neural networks, fuzzy logic and GIS: the case of the Athens metropolitan area. Cities, 30, 193–203.

    Google Scholar 

  • Han, Y., & Jia, H. (2016). Simulating the spatial dynamics of urban growth with an integrated modeling approach: a case study of Foshan, China. Ecological Modelling, 353, 107–116.

  • He, C., Okada, N., Zhang, Q., Shi, P., & Li, J. (2008). Modelling dynamic urban expansion processes incorporating a potential model with cellular automata. Landscape and Urban Planning, 86(1), 79–91.

    Google Scholar 

  • Henderson, B. L., Bui, E. N., Moran, C. J., & Simon, D. (2005). Australia-wide predictions of soil properties using decision trees. Geoderma, 124(3–4), 383–398.

    CAS  Google Scholar 

  • Hu, T., Yang, J., Li, X., & Gong, P. (2016). Mapping urban land use by using Landsat images and open social data. Remote Sensing, 8(2), 151.

    CAS  Google Scholar 

  • Huang, W., Liu, H., Luan, Q., Jiang, Q., Liu, J., & Liu, H. (2008). Detection and prediction of land use change in Beijing based on remote sensing and GIS. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37, 75–82.

    Google Scholar 

  • Huang, B., Xie, C., Tay, R., & Wu, B. (2009). Land-use-change modeling using unbalanced support-vector machines. Environment and Planning B: Planning and Design, 36(3), 398–416.

    Google Scholar 

  • Islam, K., Jashimuddin, M., Nath, B., & Nath, T. K. (2018a). Land use classification and change detection by using multi-temporal remotely sensed imagery: the case of Chunati wildlife sanctuary, Bangladesh. The Egyptian Journal of Remote Sensing and Space Science, 21(1), 37–47.

    Google Scholar 

  • Islam, K., Rahman, M. F., & Jashimuddin, M. (2018b). Modeling land use change using cellular automata and artificial neural network: the case of Chunati Wildlife Sanctuary, Bangladesh. Ecological Indicators, 88, 439–453.

    Google Scholar 

  • Jeong, R., & Rilett, R. (2004). Bus arrival time prediction using artificial neural network model. Paper presented at the Intelligent Transportation Systems, 2004. Proceedings. The 7th International IEEE Conference on.

  • Ji, W., Ma, J., Twibell, R. W., & Underhill, K. (2006). Characterizing urban sprawl using multi-stage remote sensing images and landscape metrics. Computers, Environment and Urban Systems, 30(6), 861–879.

    Google Scholar 

  • Johnson, B. A., & Iizuka, K. (2016). Integrating OpenStreetMap crowdsourced data and Landsat time-series imagery for rapid land use/land cover (LULC) mapping: case study of the Laguna de Bay area of the Philippines. Applied Geography, 67, 140–149.

    Google Scholar 

  • Jokar Arsanjani, J., Helbich, M., Kainz, W., & Darvishi Boloorani, A. (2013). Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. International Journal of Applied Earth Observation and Geoinformation, 21, 265–275.

    Google Scholar 

  • KantaKumar, N. L., Sawant, N. G., & Kumar, S. (2011). Forecasting urban growth based on GIS, RS and SLEUTH model in Pune metropolitan area. International Journal of Geomatics and Geosciences, 2(2), 568–579.

    Google Scholar 

  • Karimi, F., Sultana, S., Babakan, A. S., & Suthaharan, S. (2019). An enhanced support vector machine model for urban expansion prediction. Computers, Environment and Urban Systems, 75, 61–75.

    Google Scholar 

  • Kavzoglu, T., & Mather, P. (2003). The use of backpropagating artificial neural networks in land cover classification. International Journal of Remote Sensing, 24(23), 4907–4938.

    Google Scholar 

  • Kidane, Y., Stahlmann, R., & Beierkuhnlein, C. (2012). Vegetation dynamics, and land use and land cover change in the Bale Mountains, Ethiopia. Environmental Monitoring and Assessment, 184(12), 7473–7489.

    CAS  Google Scholar 

  • Kong, F., Yin, H., Nakagoshi, N., & James, P. (2012). Simulating urban growth processes incorporating a potential model with spatial metrics. Ecological Indicators, 20, 82–91.

    Google Scholar 

  • Kumar, M., & Biswas, V. (2013). Identification of potential sites for urban development using GIS based multi criteria evaluation technique. A case study of Shimla municipal area, Shimla District, Himachal Pradesh, India. Journal of Settlements and Spatial Planning, 4(1), 45.

    CAS  Google Scholar 

  • Kumar, M., & Shaikh, V. R. (2013). Site suitability analysis for urban development using GIS based multicriteria evaluation technique. Journal of the Indian Society of Remote Sensing, 41(2), 417–424.

    Google Scholar 

  • Lee, S., Ryu, J.-H., Won, J.-S., & Park, H.-J. (2004). Determination and application of the weights for landslide susceptibility mapping using an artificial neural network. Engineering Geology, 71(3–4), 289–302.

    Google Scholar 

  • Lee, S.-T., Lei, T.-C., & Wu, C.-W. (2009a). Artificial neural network and cellular automata as a modeling simulation for night market spatial development. Paper presented at the 4th design, Rigor and Relevance conference of International Association of Societies of Design Research.

  • Lee, S.-T., Lei, T.-C., & Wu, C.-W. (2009b). Artificial neural network and cellular automata as a modeling simulation for night market spatial development. The Proceeding of 2009 International Association of Societies of Design Research, Seoul, Korean, October 2009.

  • Lei, Z., & Weng, Q. (2018). Impervious surface estimation by integrated use of Landsat and MODIS time series in Wuhan, China. In Remote Sensing Time Series Image Processing (pp. 143–156). Boca Raton: CRC Press.

    Google Scholar 

  • Li, D., Li, X., Liu, X., Chen, Y., Li, S., Liu, K., Qiao, J. G., Zheng, Y. Z., Zhang, Y. H., & Lao, C. (2012). GPU-CA model for large-scale land-use change simulation. Chinese Science Bulletin, 57(19), 2442–2452.

    Google Scholar 

  • Li, Z., Guan, X., Wu, H., & Gong, J. (2017). A novel k-means clustering based task decomposition method for distributed vector-based CA models. ISPRS International Journal of Geo-Information, 6(4), 93.

    Google Scholar 

  • Liao, F. H., & Wei, Y. D. (2014). Modeling determinants of urban growth in Dongguan, China: a spatial logistic approach. Stochastic Environmental Research and Risk Assessment, 28(4), 801–816.

    Google Scholar 

  • Liu, Y., & Feng, Y. (2012). A logistic based cellular automata model for continuous urban growth simulation: a case study of the Gold Coast City, Australia. In Agent-based models of geographical systems (pp. 643–662). Berlin: Springer.

    Google Scholar 

  • Liu, M., Hu, Y., Chang, Y., He, X., & Zhang, W. (2009). Land use and land cover change analysis and prediction in the upper reaches of the Minjiang River, China. Environmental Management, 43(5), 899–907.

    Google Scholar 

  • Liu, Y., Feng, Y., & Pontius, R. G. (2014). Spatially-explicit simulation of urban growth through self-adaptive genetic algorithm and cellular automata modelling. Land, 3(3), 719–738.

    Google Scholar 

  • Lu, D., Hetrick, S., & Moran, E. (2010). Land cover classification in a complex urban-rural landscape with QuickBird imagery. Photogrammetric Engineering & Remote Sensing, 76(10), 1159–1168.

    Google Scholar 

  • Maithani, S. (2009). A neural network based urban growth model of an Indian city. Journal of the Indian Society of Remote Sensing, 37(3), 363–376.

    Google Scholar 

  • Makuti, S., Nex, F., & Yang, M. (2018). Multi-Temporal Classification And Change Detection Using UAV Images. Paper presented at the 2018 ISPRS TC II Mid-term Symposium “Towards Photogrammetry 2020”, 4–7 June 2018, Riva del Garda, Italy.

  • Mishra, V. N., Rai, P. K., & Mohan, K. (2014). Prediction of land use changes based on land change modeler (LCM) using remote sensing: a case study of Muzaffarpur (Bihar), India. Journal of the Geographical Institute “Jovan Cvijic”, SASA, 64(1), 111–127.

    Google Scholar 

  • Mohammady, S., Delavar, M., & Pahlavani, P. (2014). Urban growth modeling using AN artificial neural network a case study of Sanandaj City, Iran. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(2), 203.

    Google Scholar 

  • Mundia, C. N., & Aniya, M. (2005). Analysis of land use/cover changes and urban expansion of Nairobi city using remote sensing and GIS. International Journal of Remote Sensing, 26(13), 2831–2849.

    Google Scholar 

  • Mustafa, A., Rienow, A., Saadi, I., Cools, M., & Teller, J. (2018). Comparing support vector machines with logistic regression for calibrating cellular automata land use change models. European Journal of Remote Sensing, 51(1), 391–401.

    Google Scholar 

  • Naghibi, S. A., Pourghasemi, H. R., & Dixon, B. (2016). GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Environmental Monitoring and Assessment, 188(1), 44.

    Google Scholar 

  • Nampak, H., Pradhan, B., Mojaddadi Rizeei, H., & Park, H. J. (2018). Assessment of land cover and land use change impact on soil loss in a tropical catchment by using multitemporal SPOT-5 satellite images and Revised Universal Soil Loss Equation model. Land Degradation & Development, 29(10), 3440–3455.

    Google Scholar 

  • Omrani, H., Abdallah, F., Charif, O., & Longford, N. T. (2015). Multi-label class assignment in land-use modelling. International Journal of Geographical Information Science, 29(6), 1023–1041.

    Google Scholar 

  • Osgouei, P. E., & Kaya, S. (2017). Analysis of land cover/use changes using Landsat 5 TM data and indices. Environmental Monitoring and Assessment, 189(4), 136.

    Google Scholar 

  • Ostad-Ali-Askari, K., Shayannejad, M., & Ghorbanizadeh-Kharazi, H. (2017). Artificial neural network for modeling nitrate pollution of groundwater in marginal area of Zayandeh-Rood River, Isfahan, Iran. KSCE Journal of Civil Engineering, 21(1), 134–140.

    Google Scholar 

  • Otukei, J. R., & Blaschke, T. (2010). Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms. International Journal of Applied Earth Observation and Geoinformation, 12, S27–S31.

    Google Scholar 

  • Pal, S., & Ghosh, S. K. (2017). Rule based end-to-end learning framework for urban growth prediction. arXiv preprint arXiv:1711.10801.

  • Park, S., Jeon, S., Kim, S., & Choi, C. (2011). Prediction and comparison of urban growth by land suitability index mapping using GIS and RS in South Korea. Landscape and Urban Planning, 99(2), 104–114.

    Google Scholar 

  • Park, S., Jeon, S., & Choi, C. (2012). Mapping urban growth probability in South Korea: comparison of frequency ratio, analytic hierarchy process, and logistic regression models and use of the environmental conservation value assessment. Landscape and Ecological Engineering, 8(1), 17–31.

    Google Scholar 

  • Pham, B. T., Bui, D. T., Dholakia, M., Prakash, I., & Pham, H. V. (2016). A comparative study of least square support vector machines and multiclass alternating decision trees for spatial prediction of rainfall-induced landslides in a tropical cyclones area. Geotechnical and Geological Engineering, 34(6), 1807–1824.

    Google Scholar 

  • Pijanowski, B. C., Tayyebi, A., Doucette, J., Pekin, B. K., Braun, D., & Plourde, J. (2014). A big data urban growth simulation at a national scale: configuring the GIS and neural network based land transformation model to run in a high performance computing (HPC) environment. Environmental Modelling & Software, 51, 250–268.

    Google Scholar 

  • Poursanidis, D., Chrysoulakis, N., & Mitraka, Z. (2015). Landsat 8 vs. Landsat 5: a comparison based on urban and peri-urban land cover mapping. International Journal of Applied Earth Observation and Geoinformation, 35, 259–269.

    Google Scholar 

  • Pourtaghi, Z. S., Pourghasemi, H. R., Aretano, R., & Semeraro, T. (2016). Investigation of general indicators influencing on forest fire and its susceptibility modeling using different data mining techniques. Ecological Indicators, 64, 72–84.

    Google Scholar 

  • Pradhan, B. (2013). A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Computers & Geosciences, 51, 350–365.

    Google Scholar 

  • Pradhan, B., & Mojaddadi, H. (2018). City compactness: assessing the influence of the growth of residential land use AU - Abdullahi, Saleh. Journal of Urban Technology, 25(1), 21–46. https://doi.org/10.1080/10630732.2017.1390299.

    Article  Google Scholar 

  • Pratyush, R. R., Bandopadhyay, A., & Singh, S. K. (2018). Urban growth modeling using logistic regression and geo-informatics: a case of Jaipur, India. International Journal of Science & Technology, 13(2018), 47–62.

  • Punia, M., & Singh, L. (2012). Entropy approach for assessment of urban growth: a case study of Jaipur, India. Journal of the Indian Society of Remote Sensing, 40(2), 231–244.

    Google Scholar 

  • Qiang, Y., & Lam, N. S. (2015). Modeling land use and land cover changes in a vulnerable coastal region using artificial neural networks and cellular automata. Environmental Monitoring and Assessment, 187(3), 57.

    Google Scholar 

  • Ramadan, E., Feng, X.-z., & Cheng, Z. (2004). Satellite remote sensing for urban growth assessment in Shaoxing City, Zhejiang Province. Journal of Zhejiang University-SCIENCE A, 5(9), 1095–1101.

    Google Scholar 

  • Rizeei, H. M., Saharkhiz, M. A., Pradhan, B., & Ahmad, N. (2016). Soil erosion prediction based on land cover dynamics at the Semenyih watershed in Malaysia using LTM and USLE models. Geocarto International, 31(10), 1158–1177.

    Google Scholar 

  • Rocha, J., Gutierres, F., Gomes, P., & Teodoro, A. C. (2018). A hybrid CA-ANN-fuzzy model for simulating coastal changing patterns. In Beach Management Tools-Concepts, Methodologies and Case Studies (pp. 197–217). Berlin: Springer.

    Google Scholar 

  • Rosli, A., Reba, M., Roslan, N., & Room, M. (2014). Sustainable urban forestry potential based quantitative and qualitative measurement using geospatial technique. Paper presented at the IOP Conference Series: Earth and Environmental Science.

  • Sabet Sarvestani, M., Ibrahim, A. L., & Kanaroglou, P. (2011). Three decades of urban growth in the city of shiraz, Iran: A remote sensing and geographic information systems application. Cities, 28(4), 320–329.

    Google Scholar 

  • Salman Aal-shamkhi, A. D., Mojaddadi, H., Pradhan, B., & Abdullahi, S. (2017). Extraction and modeling of urban sprawl development in Karbala City using VHR satellite imagery. In B. Pradhan (Ed.), Spatial modeling and assessment of urban form: analysis of urban growth: from sprawl to compact using geospatial data (pp. 281–296). Cham: Springer International Publishing.

    Google Scholar 

  • Samardžić-Petrović, M., Kovačević, M., Bajat, B., & Dragićević, S. (2017). Machine learning techniques for modelling short term land-use change. ISPRS International Journal of Geo-Information, 6(12), 387.

    Google Scholar 

  • Sangermano, F., Eastman, J. R., & Zhu, H. (2010). Similarity weighted instance-based learning for the generation of transition potentials in land use change modeling. Transactions in GIS, 14(5), 569–580.

    Google Scholar 

  • Schug, F., Okujeni, A., Hauer, J., Hostert, P., Nielsen, J. Ø., & van der Linden, S. (2018). Mapping patterns of urban development in Ouagadougou, Burkina Faso, using machine learning regression modeling with bi-seasonal Landsat time series. Remote Sensing of Environment, 210, 217–228.

    Google Scholar 

  • Serra, P., Pons, X., & Saurí, D. (2008). Land-cover and land-use change in a Mediterranean landscape: a spatial analysis of driving forces integrating biophysical and human factors. Applied Geography, 28(3), 189–209.

    Google Scholar 

  • Shafizadeh-Moghadam, H., & Helbich, M. (2015). Spatiotemporal variability of urban growth factors: a global and local perspective on the megacity of Mumbai. International Journal of Applied Earth Observation and Geoinformation, 35, 187–198.

    Google Scholar 

  • Shafizadeh-Moghadam, H., Tayyebi, A., Ahmadlou, M., Delavar, M. R., & Hasanlou, M. (2017a). Integration of genetic algorithm and multiple kernel support vector regression for modeling urban growth. Computers, Environment and Urban Systems, 65, 28–40.

  • Shafizadeh-Moghadam, H., Tayyebi, A., & Helbich, M. (2017b). Transition index maps for urban growth simulation: application of artificial neural networks, weight of evidence and fuzzy multi-criteria evaluation. Environmental Monitoring and Assessment, 189(6), 300.

    Google Scholar 

  • Shahraki, S. Z., Sauri, D., Serra, P., Modugno, S., Seifolddini, F., & Pourahmad, A. (2011). Urban sprawl pattern and land-use change detection in Yazd, Iran. Habitat International, 35(4), 521–528.

    Google Scholar 

  • Shahumyan, H., Moeckel, R., Claggett, P., & Ducca, F. (2016). Integration of land use and land cover models: coupling two existing models to improve the simulation of location choice. Paper presented at the 8th International Congress on Environmental Modelling and Software, Toulouse, France, 10-14 July 2016.

  • Sharaf, S. A., Serra, P., & Saurí, D. (2018). A district and sector land-use and landscape analysis of urban sprawl in Al Ain municipality (United Arab Emirates): just a quick conversion from sand to a built-up environment? Applied Geography, 95, 88–100.

    Google Scholar 

  • Silva, E. A., & Clarke, K. C. (2002). Calibration of the SLEUTH urban growth model for Lisbon and Porto, Portugal. Computers, Environment and Urban Systems, 26(6), 525–552.

    Google Scholar 

  • Spruce, J. P., Smoot, J. C., Ellis, J. T., Hilbert, K., & Swann, R. (2014). Geospatial method for computing supplemental multi-decadal US coastal land use and land cover classification products, using Landsat data and C-CAP products. Geocarto International, 29(5), 470–485.

    Google Scholar 

  • Tan, K. C., San Lim, H., MatJafri, M. Z., & Abdullah, K. (2010). Landsat data to evaluate urban expansion and determine land use/land cover changes in Penang Island, Malaysia. Environmental Earth Sciences, 60(7), 1509–1521.

    Google Scholar 

  • Tang, J., Wang, L., & Yao, Z. (2007). Spatio-temporal urban landscape change analysis using the Markov chain model and a modified genetic algorithm. International Journal of Remote Sensing, 28(15), 3255–3271.

    Google Scholar 

  • Tayyebi, A. (2013). Simulating land use land cover change using data mining and machine learning algorithms.

  • Tayyebi, A., Pekin, B. K., Pijanowski, B. C., Plourde, J. D., Doucette, J. S., & Braun, D. (2013). Hierarchical modeling of urban growth across the conterminous USA: developing meso-scale quantity drivers for the land transformation model. Journal of Land Use Science, 8(4), 422–442.

    Google Scholar 

  • Tehrany, M. S., Pradhan, B., & Jebur, M. N. (2014). Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. Journal of Hydrology, 512, 332–343.

    Google Scholar 

  • Thapa, R. B., & Murayama, Y. (2010). Drivers of urban growth in the Kathmandu Valley, Nepal: examining the efficacy of the analytic hierarchy process. Applied Geography, 30(1), 70–83.

    Google Scholar 

  • Tien Bui, D., Pradhan, B., Lofman, O., & Revhaug, I. (2012). Landslide susceptibility assessment in Vietnam using support vector machines, decision tree, and naive Bayes models. Mathematical Problems in Engineering, 2012, 126.

    Google Scholar 

  • Wang, F. (1994). The use of artificial neural networks in a geographical information system for agricultural land-suitability assessment. Environment and Planning A, 26(2), 265–284.

    Google Scholar 

  • Wang, J., & Maduako, I. N. (2018). Spatio-temporal urban growth dynamics of Lagos metropolitan region of Nigeria based on hybrid methods for LULC modeling and prediction. European Journal of Remote Sensing, 51(1), 251–265.

    Google Scholar 

  • Wang, J., Lin, Y., Glendinning, A., & Xu, Y. (2018). Land-use changes and land policies evolution in China’s urbanization processes. Land Use Policy, 75, 375–387.

    Google Scholar 

  • Wei, W., Yunjia, W., Qing, W., Dajun, L., & Zhijie, W. (2012). Application of decision tree in land use classification. Paper presented at the Proceedings of the 2011, International Conference on Informatics, Cybernetics, and Computer Engineering (ICCE2011) November 19–20, 2011, Melbourne, Australia.

  • Xia, L. I., & Gar-On, Y. A. (2002). Neural-network-based cellular automata for realistic and idealized urban simulation [J]. Acta Geographica Sinica, 2(005).

  • Yang, X., & Lo, C. (2002). Using a time series of satellite imagery to detect land use and land cover changes in the Atlanta, Georgia metropolitan area. International Journal of Remote Sensing, 23(9), 1775–1798.

    Google Scholar 

  • Yang, Q., Li, X., & Shi, X. (2008). Cellular automata for simulating land use changes based on support vector machines. Computers & Geosciences, 34(6), 592–602.

    Google Scholar 

  • Yao, X., & Dai, F. (2006). Support vector machinòe modeling of landslide susceptibility using a GIS: a case study. IAEG2006, 793.

  • Yao, F., Hao, C., & Zhang, J. (2016). Simulating urban growth processes by integrating cellular automata model and artificial optimization in Binhai New Area of Tianjin, China. Geocarto International, 31(6), 612–627.

    Google Scholar 

  • Yin, H., Pflugmacher, D., Li, A., Li, Z., & Hostert, P. (2018). Land use and land cover change in Inner Mongolia-understanding the effects of China’s re-vegetation programs. Remote Sensing of Environment, 204, 918–930.

    Google Scholar 

  • Yüksel, A., Akay, A. E., & Gundogan, R. (2008). Using ASTER imagery in land use/cover classification of eastern Mediterranean landscapes according to CORINE land cover project. Sensors, 8(2), 1237–1251.

    Google Scholar 

  • Zeng, C., Liu, Y., Stein, A., & Jiao, L. (2015). Characterization and spatial modeling of urban sprawl in the Wuhan metropolitan area, China. International Journal of Applied Earth Observation and Geoinformation, 34, 10–24.

    Google Scholar 

  • Zhang, Y., & Wallace, B. (2015). A sensitivity analysis of (and practitioners’ guide to) convolutional neural networks for sentence classification. arXiv preprint arXiv:1510.03820.

Download references

Funding

The study presented here is part of a research project funded by Universiti Sains Malaysia (USM) under grant no. 1001/PAWAM/8022043.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Sanusi S. Ahamad.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1. We conducted a comprehensive overview of conventional and ML models for land-use change.

2. We focused on ML models and their strong and weak points.

3. We conducted a review of data and factors that influence the simulation process of land-use change.

4. The ML models should be able to address the limitations of dynamic and statistical models.

5. The limitations of ML models could be improved using programming languages such as Python.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aburas, M.M., Ahamad, M.S.S. & Omar, N.Q. Spatio-temporal simulation and prediction of land-use change using conventional and machine learning models: a review. Environ Monit Assess 191, 205 (2019). https://doi.org/10.1007/s10661-019-7330-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7330-6

Keywords

Navigation