Skip to main content
Log in

Distribution and risk assessment of trace metals in riverine surface sediments in gold mining area

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Recognizing the pollution characteristics and potential risks of trace metals in sediments are important to protect water ecosystem safety. In the present study, a systematic investigation was performed to assess the pollution and risk level of trace metals in river sediments located in the greatest gold production base in China. The geo-accumulation index was used to assess the contamination degree. The sediment quality guidelines and potential ecological risk index were employed to complete an ecological risk assessment. A non-carcinogenic health risk assessment was also carried out to evaluate potential adverse health risks. Correlations and principal component analyses were applied to check relationships among trace metals and ascertain potential pollution sources. The results suggested that the sediments in the river were most polluted by As, Cd, and Hg followed by Cu, Pb, and Zn. The assessment of potential human health risk revealed that there was no significant non-carcinogenic risk to the inhabitants. Gold mining and smelting activities and the long-term excessive application of fertilizers and agrochemicals were identified as the main anthropogenic releases. This study contributed an understanding that possible sources, contamination degree, and ecological risk level of trace metals in riverine surface sediments in a gold mining area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmadi, P., Ghorbani, M. R., Coltorti, M., Kuritani, T., Cai, Y., Fioretti, A. M., Braschi, E., Giacomoni, P. P., Aghabazaz, F., Babazadeh, S., & Conticelli, S. (2019). High-Nb hawaiite-mugearite and high-Mg calc-alkaline lavas from northeastern Iran: Oligo-Miocene melts from modified mantle wedge. International Geology Review, 61, 150–174. https://doi.org/10.1080/00206814.2017.1416502.

    Article  Google Scholar 

  • Birch, G. F., & Apostolatos, C. (2013). Use of sedimentary metals to predict metal concentrations in black mussel (Mytilus galloprovincialis) tissue and risk to human health (Sydney estuary, Australia). Environmental Science and Pollution Research, 20, 5481–5491. https://doi.org/10.1007/s11356-013-1538-8.

    Article  CAS  Google Scholar 

  • Caeiro, S., Costa, M. H., Ramos, T. B., Fernandes, F., Silveira, N., Coimbra, A., Medeiros, G., & Painho, M. (2005). Assessing heavy metal contamination in Sado Estuary sediment: an index analysis approach. Ecological Indicators, 5, 151–169. https://doi.org/10.1016/j.ecolind.2005.02.001.

    Article  CAS  Google Scholar 

  • Cai, L., Xu, Z., Bao, P., He, M., Dou, L., Chen, L., Zhou, Y., & Zhu, Y. G. (2015). Multivariate and geostatistical analyses of the spatial distribution and source of arsenic and heavy metals in the agricultural soils in Shunde, Southeast China. Journal of Geochemical Exploration, 148, 189–195. https://doi.org/10.1016/j.gexplo.2014.09.010.

    Article  CAS  Google Scholar 

  • Cai, Y. B., Mi, Y. T., Yu, J., & Zhang, H. (2016). Arsenic speciation and kinetic release simulation of stream sediment contaminated by gold mining. Journal of Soils and Sediments, 16, 1121–1129. https://doi.org/10.1007/s11368-015-1334-9.

    Article  CAS  Google Scholar 

  • Cai, Y. B., Zhang, H., Yuan, G. D., & Li, F. Y. (2017). Sources, speciation and transformation of arsenic in the gold mining impacted Jiehe River, China. Applied Geochemistry, 84, 254–261. https://doi.org/10.1016/j.apgeochem.2017.07.001.

    Article  CAS  Google Scholar 

  • CEPA. (1995). Environmental quality standard for soils. (GB15618-1995), first edition. Beijing: Chinese Environmental Protection Administration.

  • Chen, H., Chen, R., Teng, Y., & Wu, J. (2016). Contamination characteristics, ecological risk and source identification of trace metals in sediments of the Le’an River (China). Ecotoxicology and Environmental Safety, 125, 85–92. https://doi.org/10.1016/j.ecoenv.2015.11.042.

    Article  CAS  Google Scholar 

  • Chen, L., Zhou, S., Wu, S., Wang, C., Li, B., Li, Y., & Wang, J. (2018). Combining emission inventory and isotope ratio analyses for quantitative source apportionment of heavy metals in agricultural soil. Chemosphere, 204, 140–147. https://doi.org/10.1016/j.chemosphere.2018.04.002.

    Article  CAS  Google Scholar 

  • Darwish, M. A. G. (2017). Reconnaissance geochemical survey in the Marahiq area, Wadi Allaqi region, south Egypt: a preliminary assessment of stream sediments for gold placer and environmental hazard. Environmental Earth Sciences, 76, 493–516. https://doi.org/10.1007/s12665-017-7152-1.

    Article  CAS  Google Scholar 

  • Esdaile, L. J., & Chalker, J. M. (2018). The mercury problem in artisanal and small-scale gold mining. Chemistry-A Europen Journal, 24, 6905–6916. https://doi.org/10.1002/chem.201704840.

    Article  CAS  Google Scholar 

  • Feng, D., Aldrich, C., & Tan, H. (2000). Treatment of acid mine water by use of heavy metal precipitation and ion exchange. Minerals Engineering, 13, 623–642. https://doi.org/10.1016/S0892-6875(00)00045-5.

    Article  CAS  Google Scholar 

  • Fu, J., Zhao, C., Luo, Y., Liu, C., Kyzas, G. Z., Luo, Y., Zhao, D., An, S., & Zhu, H. (2014). Heavy metals in surface sediments of the Jialu River, China: Their relations to environmental factors. Journal of Hazardous Materials, 270, 102–109. https://doi.org/10.1010/j.jhazmat.2014.01.044.

    Article  CAS  Google Scholar 

  • Gao, Z. X. (2018). Evaluation of heavy metal pollution and its ecological risk in one river reach of a gold mine in Inner Mongolia, Northern China. International Biodeterioration, 128, 94–99. https://doi.org/10.1016/j.ibiod.2017.01.001.

    Article  CAS  Google Scholar 

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control.a sedimentological approach. Water Research, 14, 975–1001. https://doi.org/10.1016/0043-1354(80)90143-8.

    Article  Google Scholar 

  • Iqbal, J., Tirmizi, S. A., & Shah, M. H. (2013). Statistical apportionment and risk assessment of selected metals in sediments from Rawal Lake (Pakistan). Environmental Monitoring and Assessment, 185, 729–743. https://doi.org/10.1007/s10661-012-2588-y.

    Article  CAS  Google Scholar 

  • Jahan, S., & Strezov, V. (2018). Comparison of pollution indices for the assessment of heavy metals in the sediments of seaports of NSW, Australia. Marine Pollution Bulletin, 128, 295–306. https://doi.org/10.1016/j.marpolbul.2018.01.036.

    Article  CAS  Google Scholar 

  • Ji, H., Li, H., Zhang, Y., Ding, H., Gao, Y., & Xing, Y. (2017). Distribution and risk assessment of heavy metals in overlying water, porewater, and sediments of Yongding River in a coal mine brownfield. Journal of Soils and Sediments, 18, 624–639.

    Article  Google Scholar 

  • Kalaivanan, D., & Ganeshamurthy, A. N. (2016). Abiotic stress physiology of horticultural crops. In Mechanisms of heavy metal toxicity in plants (1st ed., pp. 85–102). New Delhi: Springer India.

    Google Scholar 

  • Khalil, M. K., Draz, S. E. O., El Zokm, G. M., & El-Said, G. F. (2015). Apportionment of geochemistry, texture’s properties, and risk assessment of some elements in surface sediments from Bardawil Lagoon, Egypt. Human and Ecological Risk Assessment: An International Journal, 22, 775–791. https://doi.org/10.1080/10807039.2015.1107714.

    Article  CAS  Google Scholar 

  • Kim, L., Vasile, G.G., Stanescu, B., Dinu, C., Ene, C. (2016). Distribution of Trace Metals in Surface Water and Streambed Sediments in the Vicinity of an Abandoned Gold Mine from Hunedoara County, Romania. Revista De Chimie, 67, 1441-1446.

  • Kükrer, S., Şeker, S., Abacı, Z. T., & Kutlu, B. (2014). Ecological risk assessment of heavy metals in surface sediments of northern littoral zone of Lake Çıldır, Ardahan, Turkey. Environmental Monitoring and Assessment, 186, 3847–3857. https://doi.org/10.1007/s10661-014-3662-4.

    Article  CAS  Google Scholar 

  • Kusin, F. M., Azani, N. N. M., Hasan, S. N. M. S., & Sulong, N. A. (2018). Distribution of heavy metals and metalloid in surface sediments of heavily-mined area for bauxite ore in Pengerang, Malaysia and associated risk assessment. Catena, 165, 454–464. https://doi.org/10.1016/j.catena.2018.02.029.

    Article  CAS  Google Scholar 

  • Lachance, G. R., & Traill, R. J. (1966). Practical solution to the matrix problem in X-ray analysis, I. Method: Canadian. Spectroscopy, 11, 43–48.

    CAS  Google Scholar 

  • Li, H., Gao, X., Gu, Y., Wang, R., Xie, P., Liang, M., Ming, H., & Su, J. (2018). Comprehensive large-scale investigation and assessment of trace metal in the coastal sediments of Bohai Sea. Marine Pollution Bulletin, 129, 126–134. https://doi.org/10.1016/j.marpolbul.2018.02.022.

    Article  CAS  Google Scholar 

  • Liu, H. Q., Liu, G. J., Wang, S. S., Zhou, C. C., Yuan, Z. J., & Da, C. N. (2018a). Distribution of heavy metals, stable isotope ratios (delta C-13 and delta N-15) and risk assessment of fish from the Yellow River Estuary, China. Chemosphere, 208, 731–739. https://doi.org/10.1016/j.chemosphere.2018.06.028.

    Article  CAS  Google Scholar 

  • Liu, Q., Wang, F., Meng, F., Jiang, L., Li, G., & Zhou, R. (2018b). Assessment of metal contamination in estuarine surface sediments from Dongying City, China: Use of a modified ecological risk index. Marine Pollution Bulletin, 126, 293–303. https://doi.org/10.1016/j.marpolbul.2017.11.017.

    Article  CAS  Google Scholar 

  • Liu, Y. F., et al. (2018c). Comprehensive risk assessment and source apportionment of heavy metal contamination in the surface sediment of the Yangtze River Anqing section, China. Environmental Earth Sciences, 77, 493–504. https://doi.org/10.1007/s12665-018-7621-1.

    Article  CAS  Google Scholar 

  • Long, E. R., & Macdonald, D. D. (1998a). Recommended uses of empirically derived, sediment quality guidelines for marine and estuarine ecosystems. Human and Ecological Risk Assessment: An International Journal, 4, 1019–1039.

    Article  Google Scholar 

  • Long, E. R., & Macdonald, D. D. (1998b). Recommended uses of empirically derived, sediment quality guidelines for marine and estuarine ecosystems. Human and Ecological Risk Assessment: An International Journal, 4, 1019–1039.

    Article  Google Scholar 

  • Ma, X. L., et al. (2016). Assessment of heavy metals contamination in sediments from three adjacent regions of the Yellow River using metal chemical fractions and multivariate analysis techniques. Chemosphere, 144, 264–272. https://doi.org/10.1016/j.chemosphere.2015.08.026.

    Article  CAS  Google Scholar 

  • MacDonald, D. D., Ingersoll, C. G., & Berger, T. A. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology, 39, 20–31. https://doi.org/10.1007/s002440010075.

    Article  CAS  Google Scholar 

  • Marrugo-Negrete, J., Pinedo-Hernández, J., & Díez, S. (2017). Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environmental Research, 154, 380–388.

    Article  CAS  Google Scholar 

  • Micó, C., Recatalá, L., Peris, M., & Sánchez, J. (2006). Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere, 65, 863–872. https://doi.org/10.1016/j.chemosphere.2006.03.016.

    Article  CAS  Google Scholar 

  • Morton-Bermea, O., Gómez-Bernal, J. M., Armienta, M. A., Lozano, R., Hernández-Álvarez, E., Romero, F., & Castro-Larragoitia, J. (2014). Metal accumulation by plant species growing on a mine contaminated site in Mexico. Environmental Earth Sciences, 71, 5207–5213.

    Article  CAS  Google Scholar 

  • Muller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. Geojournal, 2, 108–118.

    Google Scholar 

  • Natali, C., & Bianchini, G. (2018). Natural vs anthropogenic components in sediments from the Po River delta coastal lagoons (NE Italy). Environmental Science and Pollution Research International, 25, 2981–2991. https://doi.org/10.1007/s11356-017-0986-y.

    Article  CAS  Google Scholar 

  • Nemati, K., Bakar, N. K. A., Abas, M. R., & Sobhanzadeh, E. (2011). Speciation of heavy metals by modified BCR sequential extraction procedure in different depths of sediments from Sungai Buloh, Selangor, Malaysia. Journal of Hazardous Materials, 192, 402–410. https://doi.org/10.1016/j.jhazmat.2011.05.039.

    Article  CAS  Google Scholar 

  • Obrist, D., Kirk, J. L., Zhang, L., Sunderland, E. M., Jiskra, M., & Selin, N. E. (2018). A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use. Ambio, 47, 116–140. https://doi.org/10.1007/s13280-017-1004-9.

    Article  CAS  Google Scholar 

  • Pan, K., & Wang, W. X. (2012). Trace metal contamination in estuarine and coastal environments in China. Science of the Total Environment, 421, 3–16. https://doi.org/10.1016/j.scitotenv.2011.03.013.

    Article  CAS  Google Scholar 

  • Pandey, M., Tripathi, S., Pandey, A. K., & Tripathi, B. D. (2014). Risk assessment of metal species in sediments of the river Ganga. Catena, 122, 140–149. https://doi.org/10.1016/j.catena.2014.06.012.

    Article  CAS  Google Scholar 

  • Rai, R., Agrawal, M., & Agrawal, S. B. (2016). Impact of heavy metals on physiological processes of plants: with special reference to photosynthetic system (pp. 127–140). New Delhi: Springer India.

    Google Scholar 

  • Rovira, J., Mari, M., Schuhmacher, M., Nadal, M., & Domingo, J. L. (2011). Monitoring environmental pollutants in the vicinity of a cement plant: A temporal study. Archives of Environmental Contamination and Toxicology, 60, 372–384. https://doi.org/10.1007/s00244-010-9628-9.

    Article  CAS  Google Scholar 

  • Ruzickova, S., Remeteiova, D., Mickova, V., & Dirner, V. (2018). Sediment matrix characterization as a tool for evaluating the environmental impact of heavy metals in metal mining, smelting, and ore processing areas. Environmental Monitoring and Assessment, 190, 158. https://doi.org/10.1007/s10661-018-6551-4.

    Article  CAS  Google Scholar 

  • Shi, C. (2016). Average background values of 39 chemical elements in stream sediments of China. Earth Science, 14, 234–258 (in chinese).

    Google Scholar 

  • Sierra, C., Ruiz-Barzola, O., Menendez, M., Demey, J. R., & Vicente-Villardon, J. L. (2017). Geochemical interactions study in surface river sediments at an artisanal mining area by means of canonical (MANOVA)-Biplot. Journal of Geochemical Exploration, 175, 72–81. https://doi.org/10.1016/j.gexplo.2017.01.002.

    Article  CAS  Google Scholar 

  • Simpson, S. L., & Batley, G. E. (2007). Predicting metal toxicity in sediments: a critique of current approaches. Integrated Environmental Assessment and Management, 3, 18–31. https://doi.org/10.1002/ieam.5630030103.

    Article  CAS  Google Scholar 

  • Strzebońska, M., Jarosz-Krzemińska, E., & Adamiec, E. (2017). Assessing historical mining and smelting effects on heavy metal pollution of river systems over span of two decades. Water, Air, and Soil Pollution, 228, 141–152.

    Article  Google Scholar 

  • Suresh, G., Ramasamy, V., Meenakshisundaram, V., Venkatachalapathy, R., & Ponnusamy, V. (2011). Influence of mineralogical and heavy metal composition on natural radionuclide concentrations in the river sediments. Applied Radiation and Isotopes, 69, 1466–1474. https://doi.org/10.1016/j.apradiso.2011.05.020.

    Article  CAS  Google Scholar 

  • Taiwo, A. M., & Awomeso, J. A. (2017). Assessment of trace metal concentration and health risk of artisanal gold mining activities in Ijeshaland, Osun state Nigeria— Part 1. Journal of Geochemical Exploration, 177, 1–10. https://doi.org/10.1016/j.gexplo.2017.01.009.

    Article  CAS  Google Scholar 

  • Tessier, A., & Campbell, P. G. C. (1987). Partitioning of trace metals in sediments: relationships with bioavailability. Hydrobiologia, 149(1), 43–52.

    Article  CAS  Google Scholar 

  • Turekian, K. K. (1961). Distribution of the elements in some major units of the earth’s crust. Geological Society of America Bulletin, 72, 175–182.

    Article  CAS  Google Scholar 

  • USEPA. (1989). Risk assessment guidance for superfund, volume 1, human health evaluation manual (part A). ReportEPA/540/1-89/002. Washington, DC: US Environmental Protection Agency.

    Google Scholar 

  • USEPA. (2004). Risk assessment guidance for superfund, volume1, human health evaluation manual (part E, supplemental guidance for dermal risk assessment). Report EPA/540/R/99/005. Washington, DC: US Environmental Protection Agency.

    Google Scholar 

  • Vallejo Toro, P. P., Vasquez Bedoya, L. F., Dario Correa, I., et al. (2016). Impact of terrestrial mining and intensive agriculture in pollution of estuarine surface sediments: spatial distribution of trace metals in the Gulf of Uraba, Colombia. Marine Pollution Bulletin, 111, 311–320. https://doi.org/10.1016/j.marpolbul.2016.06.093.

    Article  CAS  Google Scholar 

  • Varol, M. (2011). Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. Journal of Hazardous Materials, 195, 355–364. https://doi.org/10.1016/j.jhazmat.2011.08.051.

    Article  CAS  Google Scholar 

  • Vianello, G., et al. (2014). Critical evaluation of an intercalibration project focused on the definition of new multi-element soil reference materials (AMS-MO1 AND AMS-ML1) Eqa. International Journal of Environmental Quality, 15, 41–64.

    Google Scholar 

  • Wang, XL., Sato, T., Xing, BS., Tao, S. (2005). Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish. Science of The Total Environment, 350, 28-37.

  • Wang, Y. B., Liu, C. W., & Wang, S. W. (2015). Characterization of heavy-metal-contaminated sediment by using unsupervised multivariate techniques and health risk assessment. Ecotoxicology and Environmental Safety, 113, 469–476. https://doi.org/10.1016/j.ecoenv.2014.12.036.

    Article  CAS  Google Scholar 

  • Xia, F., Qu, L., Wang, T., Luo, L., Chen, H., Dahlgren, R. A., Zhang, M., Mei, K., & Huang, H. (2018). Distribution and source analysis of heavy metal pollutants in sediments of a rapid developing urban river system. Chemosphere, 207, 218–228. https://doi.org/10.1016/j.chemosphere.2018.05.090.

    Article  CAS  Google Scholar 

  • Zhang, H., Yu, J., & Zhou, S. (2014). Spatial distribution of As, Cr, Pb, Cd, Cu, and Zn in the water and sediment of a river impacted by gold mining. Mine Water and the Environment, 33, 206–216.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA23050203) and the National Natural Science Foundation of China (Grant No. 41373100). Additional support was provided by the CAS Key Technology Talent Program and the Instrument Developing Project of the Chinese Academy of Sciences (Grant No. Y728021021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanqing Sheng.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, J., Liu, Q. & Sheng, Y. Distribution and risk assessment of trace metals in riverine surface sediments in gold mining area. Environ Monit Assess 191, 191 (2019). https://doi.org/10.1007/s10661-019-7311-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7311-9

Keywords

Navigation