Skip to main content

Advertisement

Log in

Benthic diatoms as bioindicators of environmental alterations in different watercourses of northern Italy

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This work aims to evaluate the effects of different environmental factors (i.e., geographical, chemical, and hydrological) on benthic diatoms at 34 sites located in 13 watercourses of northern Italy, and to highlight possible misclassifications of the ecological status of watercourses, sensu Water Framework Directive, related to the normative index currently adopted in Italy (ICMi). The analysis of both the taxonomical and functional composition of diatom communities confirmed the presence of differences in terms of taxonomical richness, diversity, and taxa assemblages, associated to the altitude and the geological characteristics of the investigated watercourses. Moreover, the data analysis revealed differences due to chemical and hydrological alterations. Specifically, our results showed a clear link among these environmental perturbations and the communities’ functional composition expressed through the use of ecological guilds. High abundance and richness of motile diatoms were detected in sites characterized by nutrient enrichment, while high abundance of low-profile diatoms was linked to hydrological alteration. In contrast, these anthropogenic perturbations were not detected by the ICMi, which ranked more than 90% of the analyzed samples in the highest quality class. This study stresses the need for a different approach in diatom data interpretation in order to achieve reliable information about the ecological status of watercourses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Addinsoft. (2011). Data analysis and statistical solution for Microsoft excel. Paris: Addinsoft.

    Google Scholar 

  • Angiolini, C., Nucci, A., Frignani, F., & Landi, M. (2011). Using multivariate analyses to assess effects of fluvial type on plant species distribution in a Mediterranean river. Wetlands, 31, 167–177. https://doi.org/10.1007/s13157-010-0118-7.

    Article  Google Scholar 

  • APAT-IRSA/CNR. (2003). Metodi analitici per le acque. APAT Manuali e linee guida 29/2003.

  • Battarbee, R., Jones, V., Flower, R., et al. (2001). Diatoms. In J. Smol, H. J. Birks, W. Last, R. Bradley, & K. Alverson (Eds.), Tracking environmental change using lake sediments (pp. 155–202). Netherlands: Springer.

    Google Scholar 

  • B-Béres, V., Török, P., Kókai, Z., Krasznai, E. T., Tóthmérész, B., & Bácsi, I. (2014). Ecological diatom guilds are useful but not sensitive enough as indicators of extremely changing water regimes. Hydrobiologia, 738, 191–204. https://doi.org/10.1007/s10750-014-1929-y.

    Article  CAS  Google Scholar 

  • Beltrami, M. E., Ciutti, F., Cappelletti, C., Lösch, B., Alber, R., & Ector, L. (2012). Diatoms from alto Adige/Südtirol (northern Italy): characterization of assemblages and their application for biological quality assessment in the context of the water framework directive. Hydrobiologia, 695, 153–170. https://doi.org/10.1007/s10750-012-1194-x.

    Article  CAS  Google Scholar 

  • Bey, M. Y., & Ector, L. (2013). Atlas des diatomées des cours d'eau de la région Rhone-Alpes. Lippmann: Centre de Recherche Public Gabriel.

    Google Scholar 

  • Biggs, B. J. F., Stevenson, R. J., & Lowe, R. L. (1998). A habitat matrix conceptual model for stream periphyton. Archiv für Hydrobiologie, 143, 21–56. https://doi.org/10.1127/archiv-hydrobiol/143/1998/21.

    Article  Google Scholar 

  • Bona, F., Falasco, E., Fenoglio, S., Iorio, L., & Badino, G. (2008). Response of macroinvertebrate and diatom communities to human-induced physical alteration in mountain streams. River Research and Applications, 24, 1068–1081. https://doi.org/10.1002/rra.1110.

    Article  Google Scholar 

  • Bona, F., La Morgia, V., & Falasco, E. (2012). Predicting river diatom removal after shear stress induced by ice melting. River Research and Applications, 28, 1289–1298. https://doi.org/10.1002/rra.1517.

    Article  Google Scholar 

  • Brignoli, M. L., Espa, P., & Batalla, R. J. (2017). Sediment transport below a small alpine reservoir desilted by controlled flushing: field assessment and one-dimensional numerical simulation. Journal of Soils and Sediments, 17, 2187–2201. https://doi.org/10.1007/s11368-017-1661-0.

    Article  CAS  Google Scholar 

  • Carrère, P., & Bloor, J. M. G. (2009). Lexique thématique à l’usage des techniciens en écologie. Clermont-Ferrand: INRA, EFPA, Unité de Recherche sur l’Ecosystème Prairial 7 p.

    Google Scholar 

  • CEMAGREF. (1982). Etude de méthodes biologiques quantitatives d’appréciation de la qualité des eaux. Rapport Q.E. Lyon-A.F.B. Rhône-Mediterranée-Corse.

  • CEN. (2004). UNI EN 14407:2004Water Quality - Guidance Standard For The Identification, Enumeration And Interpretation Of Benthic Diatom Samples From Running Waters. Available at https://infostore.saiglobal.com.

  • CEN. (2005). UNI EN 13946:2005Water Quality - Guidance standard for the routine sampling and pretreatment of benthic diatoms from rivers. Available at https://infostore.saiglobal.com.

  • Charles, D. F., Tuccillo, A. P., & Belton, T. J. (2019). Use of diatoms for developing nutrient criteria for rivers and streams: a biological condition gradient approach. Ecological Indicators, 96, 258–269. https://doi.org/10.1016/j.ecolind.2018.08.048.

    Article  CAS  Google Scholar 

  • Clausen, B., & Biggs, B. (1997). Relationships between benthic biota and hydrological indices in New Zealand streams. Freshwater Biology, 38, 327–342. https://doi.org/10.1046/j.1365-2427.1997.00230.x.

    Article  Google Scholar 

  • EC. (2000). Directive 2000/60/EC of the European Parliament and of the Council of 23rd October 2000 establishing a framework for community action in the field of water policy. Official Journal of the European Communities, L327/1. Brussels, European Commission.

  • Engelhardt, B. M., Weisberg, P. J., & Chambers, J. C. (2011). Influences of watershed geomorphology on extent and composition of riparian vegetation. Journal of Vegetation Science, 23, 127–139. https://doi.org/10.1111/j.1654-1103.2011.01328.x.

    Article  Google Scholar 

  • Espa, P., Castelli, E., Crosa, G., & Gentili, G. (2013). Environmental effects of storage preservation practices: controlled flushing of fine sediment from a small hydro-power reservoir. Environmental Management, 52, 261–276. https://doi.org/10.1007/s00027-009-0117-z.

    Article  CAS  Google Scholar 

  • Espa, P., Crosa, G., Gentili, G., Quadroni, S., & Petts, G. (2015). Downstream ecological impacts of controlled sediment flushing in an alpine valley river: a case study. River Research and Applications, 31, 931–942. https://doi.org/10.1002/rra.2788.

    Article  Google Scholar 

  • Espa, P., Brignoli, M. L., Crosa, G., Gentili, G., & Quadroni, S. (2016). Controlled sediment flushing at the Cancano reservoir (Italian Alps): management of the operation and downstream environmental impact. Journal of Environmental Management, 182, 1–12. https://doi.org/10.1016/j.jenvman.2016.07.021.

    Article  Google Scholar 

  • Falasco, E., Mobili, L., Risso, A. M., & Bona, F. (2012). First considerations on the ICMi diatom index application in north-west Italy. Biologia Ambientale, 26, 21–28.

    Google Scholar 

  • Falasco, E., Piano, E., & Bona, F. (2013). Guida al riconoscimento e all’ecologia delle principali diatomee fluviali dell’Italia nord occidentale. Biologia Ambientale, 27, 1–288.

    Google Scholar 

  • Feminella, J. W., & Hawkins, C. P. (1995). Interactions between stream herbivores and periphyton: a quantitative analysis of past experiments. Journal of the North American Benthological Society, 14, 465–509. https://doi.org/10.2307/1467536.

    Article  Google Scholar 

  • Fourtanier, E., & Kociolek, J. P. (2011). Catalogue of Diatom Names, California Academy of Sciences, on-line version updated 19 sep 2011 available online at: http://research.calacademy.org/research/diatoms/names/index.asp.

  • Guiry, M. D., & Guiry, G. M. (2015). AlgaeBase, World-wide electronic publication. Galway: National University of Ireland http://www.algaebase.org.

    Google Scholar 

  • Heath, M. W., Wood, S. A., Brasell, K. A., Young, R. G., & Ryan, K. G. (2015). Development of habitat suitability criteria and in-stream habitat assessment for the benthic cyanobacteria Phormidium. River Research and Applications, 31, 98–108. https://doi.org/10.1002/rra.2722.

    Article  Google Scholar 

  • Hofmann, G., Werum, M., & Lange-Bertalot, H. (2011). Diatomeen im Sϋβwasser-Benthos von Mitteleuropa. A.R.G. Gantner Verlag K.G., 908 pp.

  • Hoyle, J. T., Kilroy, C., Hicks, D. M., & Brown, L. (2017). The influence of sediment mobility and channel geomorphology on periphyton abundance. Freshwater Biology, 62, 258–273. https://doi.org/10.1111/fwb.12865.

    Article  Google Scholar 

  • ISPRA. (2014). Protocollo di campionamento e analisi delle diatomee bentoniche dei corsi d’acqua. In: Metodi biologici per le acque superficiali interne. Roma: ISPRA, Manuali e linee guida, 111/2014.

  • Johnson, R. E., Tuchman, N. C., & Peterson, C. G. (1997). Changes in the vertical microdistribution of diatoms within a developing periphyton mat. Journal of the North American Benthological Society, 16, 503–519. https://doi.org/10.2307/1468140.

    Article  Google Scholar 

  • Jüttner, I., Sharma, S., Dahal, B. M., Ormerod, S. J., Chimonides, P. J., & Cox, E. J. (2003). Diatoms as indicators of stream quality in the Kathmandu Valley and Middle Hills of Nepal and India. Freshwater Biology, 48, 2065–2084. https://doi.org/10.1046/j.1365-2427.2003.01138.x.

    Article  Google Scholar 

  • Kelly, M. (2013). Data rich, information poor? Phytobenthos assessment and the Water Framework Directive. European Journal of Phycology, 48, 437–450. https://doi.org/10.1080/09670262.2013.852694.

    Article  Google Scholar 

  • Kornan, M., & Kropil, R. (2014). What are ecological guilds? Dilemma of guild concepts. Russian Journal of Ecology, 45, 445–447. https://doi.org/10.1134/S1067413614050178.

    Article  Google Scholar 

  • Krammer, K. (2002). Cymbella—diatoms of Europe volume 3. Diatoms of the European inland waters and comparable habitats. A. R. G. GantnerVerlag, Rugel.

  • Krammer, K., & Lange-Bertalot, H. (1986). Bacillariophyceae. 1. Teil: Naviculaceae, Sϋβwasserflora von Mitteleuropa, 2/1. Stuttgart: Gustav Fischer Verlag Neuauflage 1997. REPRINT 2007.

    Google Scholar 

  • Krammer, K., & Lange-Bertalot, H. (1988). Bacillariophyceae. 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. Sϋβwasserflora von Mitteleuropa, 2/2. Stuttgart: Gustav Fischer Verlag Neuauflage 1997. REPRINT 2007.

    Google Scholar 

  • Krammer, K., & Lange-Bertalot, H. (1991a). Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. Sϋβwasserflora von Mitteleuropa, 2/3. Stuttgart: Gustav Fischer Verlag CORRECTED REPRINT 2004.

    Google Scholar 

  • Krammer, K., & Lange-Bertalot, H. (1991b). Bacillariophyceae. 4 Teil: Achnanthaceae, kritische Erganzungen zu Achnanthes s.l., Navicula s.str. und Gomphonema. Sϋβwasserflora von Mitteleuropa, 2/4. Stuttgart: Gustav Fischer Verlag REV. ED. 2004.

    Google Scholar 

  • Krammer, K., & Lange-Bertalot, H. (2000). Bacillariophyceae. Part 5: English and French translation of the keys. Sϋβwasserflora von Mitteleuropa, 2/5. Stuttgart: Gustav Fischer Verlag.

    Google Scholar 

  • Lange, K., Townsend, C. R., & Matthaei, C. D. (2016). A trait-based framework for stream algal communities. Ecology and Evolution, 6, 23–36. https://doi.org/10.1002/ece3.1822.

    Article  Google Scholar 

  • Lange-Bertalot, H. (2001) Navicula sensu stricto, 10 genera separated from Navicula sensu lato, Frustulia - diatoms of Europe, volume 2. Diatoms of the European inland waters and comparable habitats. A. R. G. GantnerVerlag, Rugell.

  • Lecointe, C., Coste, M., & Prygiel, J. (1993). “Omnidia”: software for taxonomy, calculation of diatom indices and inventories management. Hydrobiologia, 269(270), 509–513. https://doi.org/10.1007/BF00028048.

    Article  Google Scholar 

  • Lobo, E. A., Callegaro, V. L. M., Hermany, G., Bes, D., Wetzel, C. A., & Oliveira, M. A. (2004). Use of epilithic diatoms as bioindicators from lotic systems in southern Brazil, with special emphasis on eutrophication. Acta Limnologica Brasilensia, 16, 25–40.

    Google Scholar 

  • MacMahon, J. A., Schimpf, D. J., Andersen, D. C., Smith, K. G., & Bayn, R. L. (1981). An organism-centered approach to some community and ecosystem concepts. Journal of Theoretical Biology, 29, 287–307. https://doi.org/10.1016/0022-5193(81)90077-1.

    Article  Google Scholar 

  • Mancini, L., & Sollazzo, C. (Eds.). (2009). Metodo per la valutazione dello stato ecologico delle acque correnti: comunità diatomiche. Roma: Istituto Superiore di Sanità (Rapporti ISTISAN 09/19).

    Google Scholar 

  • Mao, S., Guo, S., Deng, H., Xie, Z., & Tang, T. (2018). Recognition of patterns of benthic diatom assemblages within a river system to aid bioassessment. Water, 10, 1559. https://doi.org/10.3390/w10111559.

    Article  Google Scholar 

  • Marcel, R., Berthon, V., Castets, V., Rimet, F., Thiers, A., Labat, F., & Fontan, B. (2017). Modelling diatom life forms and ecological guilds for river biomonitoring. Knowledge & Management of Aquatic Ecosystems, 418, 1–15. https://doi.org/10.1051/kmae/2016033.

    Article  Google Scholar 

  • MATTM. (2010). D.M. Ambiente 8 novembre 2010 n. 260. Regolamento recante i criteri tecnici per la classificazione dello stato dei corpi idrici superficiali, per la modifica delle norme tecniche del decreto legislativo 3 aprile 2006, n.152, recante norme in materia ambientale, predisposto ai sensi dell’articolo 75, comma 3, del medesimo decreto legislativo.

  • MATTM. (2017). Decreto n. 30/STA del 13/02/2017, di approvazione delle Linee Guida per l’aggiornamento dei metodi di determinazione del deflusso minimo vitale al fine di garantire il mantenimento nei corsi d’acqua del deflusso ecologico a sostegno del raggiungimento degli obiettivi di qualità ambientale dei corpi idrici definiti ai sensi della Direttiva 2000/60/CE.

  • Montgomery, D. R., & Buffington, J. M. (1997). Channel-reach morphology in mountain drainage basins. Geological Society of America Bulletin, 109, 596–611. https://doi.org/10.1130/0016-7606(1997)109b0596:CRMIMDN2.3.CO;2.

    Article  Google Scholar 

  • Nhiwatiwa, T., Dalu, T., & Sithole, T. (2017). Assessment of river quality in a subtropical austral river system: a combined approach using benthic diatoms and macroinvertebrates. Applied Water Science, 7, 4785–4792. https://doi.org/10.1007/s13201-017-0599-0.

    Article  CAS  Google Scholar 

  • Nucci, A., Angiolini, C., Landi, M., & Bacchetta, G. (2012). Influence of bedrock-alluvial transition on plant species distribution along a Mediterranean river corridor. Plant Biosystems, 146, 564–575. https://doi.org/10.1080/11263504.2012.670669.

    Article  Google Scholar 

  • o’Driscoll, C., de Eyto, E., Rodgers, M., O’Connor, M., Kelly, M., & Xiao, L. (2014). Spatial and seasonal variation of peatland-fed riverine macroinvertebrate and benthic diatom assemblages and implications for assessment: a case study from Ireland. Hydrobiologia, 728, 67–87. https://doi.org/10.1007/s10750-014-1807-7.

    Article  Google Scholar 

  • Pardo, I., Delgado, C., Abraín, R., Gómez-Rodríguez, C., García-Roselló, E., García, L., & Reynoldson, T. B. (2018). A predictive diatom-based model to assess the ecological status of streams and rivers of northern Spain. Ecological Indicators, 90, 519–528. https://doi.org/10.1016/j.ecolind.2018.03.042.

    Article  Google Scholar 

  • Passy, S. I. (2007). Diatom ecological guilds display distinct and predictable behavior along nutrient and disturbance gradients in running waters. Aquatic Botany, 86, 171–178. https://doi.org/10.1016/j.aquabot.2006.09.018.

    Article  Google Scholar 

  • Peterson, C. G. (1987). Gut passage and insect grazer selectivity of lotic diatoms. Freshwater Biology, 18, 455–460. https://doi.org/10.1111/j.1365-2427.1987.tb01330.x.

    Article  Google Scholar 

  • Poikane, S., Kelly, M., & Cantonati, M. (2016). Benthic algal assessment of ecological status in European lakes and rivers: challenges and opportunities. Science of the Total Environment, 568, 603–613. https://doi.org/10.1016/j.scitotenv.2016.02.027.

    Article  CAS  Google Scholar 

  • Potapova, M., & Charles, D. F. (2002). Benthic diatoms in USA rivers: distribution along spatial and environmental gradients. Journal of Biogeography, 29, 167–187. https://doi.org/10.1046/j.1365-2699.2002.00668.x.

    Article  Google Scholar 

  • Quadroni, S., Brignoli, M. L., Crosa, G., Gentili, G., Salmaso, F., Zaccara, S., & Espa, P. (2016). Effects of sediment flushing from a small Alpine reservoir on downstream aquatic fauna. Ecohydrology, 9, 1276–1288. https://doi.org/10.1002/eco.1725.

    Article  Google Scholar 

  • Quadroni, S., Crosa, G., Gentili, G., & Espa, P. (2017). Response of stream benthic macroinvertebrates to current water management in Alpine catchments massively developed for hydro-power. Science of the Total Environment, 609, 484–496. https://doi.org/10.1016/j.scitotenv.2017.07.099.

    Article  CAS  Google Scholar 

  • Regione Lombardia. (2014). D.d.g. 8 maggio 2014 - n. 3816 Integrazione del d.d.g. n. 9001 dell’8 agosto 2008. Approvazione delle linee guida per l’avvio di sperimentazioni sul deflusso minimo vitale in tratti del reticolo idrico naturale regionale. Bollettino Ufficiale regione Lombardia, Serie Ordinaria n. 20 - Lunedì 12 maggio 2014.

  • Rimet, F. (2009). Benthic diatom assemblages and their correspondence with ecoregional classifications: case study of rivers in north-eastern France. Hydrobiologia, 636, 137–151. https://doi.org/10.1007/s10750-009-9943-1.

    Article  Google Scholar 

  • Rimet, F., & Bouchez, A. (2012). Life-forms, cell-sizes and ecological guilds of diatoms in European rivers. Knowledge and Management of Aquatic Ecosystems, 406, 1–12. https://doi.org/10.1051/kmae/2012018.

    Article  Google Scholar 

  • Root, R. B. (1967). The niche exploitation pattern of the Blue-Gray Gnatcatcher. Ecological Monographs, 37, 317–350. https://doi.org/10.2307/1942327

  • Rott, E., Pipp, E., Pfister, P., Van Dam, H., Ortler, K., Binder, N., & Pall, K. (1999). Indikationslisten für Aufwuchsalgen in Österreichischen Fliessgewassern. Teil 2: Trophieindikation. Vienna: Bundesministerium für Land- und Forstwirtschaft.

    Google Scholar 

  • Salmaso, F., Quadroni, S., Romanò, A., Compare, S., Gentili, G., & Crosa, G. (2014). Ecological status definition according to D.M. 260/2010 in two lowland rivers (Adda and Ticino) characterized by minimum flow. Biologia Ambientale, 28, 25–37.

    Google Scholar 

  • Salmaso, F., Quadroni, S., Gentili, G., & Crosa, G. (2017). Thermal regime of a highly regulated Italian river (Ticino River) and implications for aquatic communities. Journal of Limnology, 76, 23–33. https://doi.org/10.4081/jlimnol.2016.1437.

    Article  Google Scholar 

  • Salmaso, F., Crosa, G., Espa, P., Gentili, G., Quadroni, S., & Zaccara, S. (2018). Benthic macroinvertebrates response to water management in a lowland river: effects of hydro-power vs irrigation off-stream diversions. Environmental Monitoring and Assessment, 190, 33. https://doi.org/10.1007/s10661-017-6390-8.

    Article  CAS  Google Scholar 

  • Simberloff, D., & Dayan, T. (1991). The guild concept and the structure of ecological communities. Annual Review of Ecology and Systematics, 22, 115–143. https://doi.org/10.1146/annurev.es.22.110191.000555.

    Article  Google Scholar 

  • Soininen, J. (2007). Environmental and spatial control of freshwater diatoms—a review. Diatom Research, 22, 473–490. https://doi.org/10.1080/0269249X.2007.9705724.

    Article  Google Scholar 

  • Stancheva, R., & Sheath, R. G. (2016). Benthic soft-bodied algae as bioindicators of stream water quality. Knowledge and Management of Aquatic Ecosystems, 417, 15. https://doi.org/10.1051/kmae/2016002.

    Article  Google Scholar 

  • Steinman, A. D. (1996). Effects of grazers on freshwater benthic algae. In R. J. Stevenson, M. L. Bothwell, R. J. Lowe, & J. H. Thorp (Eds.), Algal ecology (pp. 341–373). San Diego: Academic Press.

    Chapter  Google Scholar 

  • Stevenson, R. J., & Pan, Y. (1999). Assessing environmental conditions in rivers and streams with diatoms. In F. Stoermer & J. P. Smol (Eds.), The diatoms: Applications for the environmental and earth sciences (pp. 11–40). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Szczepocka, E., Kruk, A., & Rakowska, B. (2015). Can tolerant diatom taxa be used for effective assessments of human pressure? River Research and Applications, 31, 368–378. https://doi.org/10.1002/rra.2744.

    Article  Google Scholar 

  • Tan, X., Ma, P., Bunn, S. E., & Zhang, Q. (2015). Development of a benthic diatom index of biotic integrity (BD-IBI) for ecosystem health assessment of human dominant subtropical rivers, China. Journal of Environmental Management, 151, 286–294. https://doi.org/10.1016/j.jenvman.2014.12.048.

    Article  Google Scholar 

  • Tapolczai, K., Bouchez, A., Stenger-Kovács, C., Padisák, J., & Rimet, F. (2016). Trait-based ecological classifications for benthic algae: review and perspectives. Hydrobiologia, 776, 1–17. https://doi.org/10.1007/s10750-016-2736-4.

    Article  Google Scholar 

  • Vasiljević, B., Simić, S. B., Paunović, M., Zuliani, T., Krizmanić, J., Marković, V., & Tomović, J. (2017). Contribution to the improvement of diatom-based assessments of the ecological status of large rivers—the Sava River case study. Science of the Total Environment, 605, 874–883. https://doi.org/10.1016/j.scitotenv.2017.06.206.

    Article  CAS  Google Scholar 

  • Wang, H., Li, Y., Li, J., An, R., Zhang, L., & Chen, M. (2018). Influences of hydrodynamic conditions on the biomass of benthic diatoms in a natural stream. Ecological Indicators, 92, 51–60. https://doi.org/10.1016/j.ecolind.2017.05.061.

    Article  CAS  Google Scholar 

  • Wilson, J. B. (1999). Guilds, functional types, and ecological groups. Oikos, 86, 507–522. https://doi.org/10.2307/3546655.

    Article  Google Scholar 

  • Zampella, R. A., Laidig, K. J., & Lowe, R. L. (2007). Distribution of diatoms in relation to land use and pH in Blackwater coastal plain streams. Environmental Management, 39, 369–384. https://doi.org/10.1007/s00267-006-0041-0.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Salmaso.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 42 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salmaso, F., Quadroni, S., Compare, S. et al. Benthic diatoms as bioindicators of environmental alterations in different watercourses of northern Italy. Environ Monit Assess 191, 158 (2019). https://doi.org/10.1007/s10661-019-7290-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7290-x

Keywords

Navigation