Skip to main content

Advertisement

Log in

Preliminary studies about the role of physicochemical parameters on the organotin compound dynamic in a South American estuary (Bahía Blanca, Argentina)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This work provides a preliminary study of the destination, mobility, and availability of tributyltin (TBT), dibutyltin (DBT), and monobutyltin (MBT) in contaminated sediments and water column within Puerto Rosales Port, located in the middle zone of the Bahía Blanca Estuary (Argentina). Therefore, this study presents the first comprehensive results of the role of several physicochemical parameters (temperature, pH, Eh, salinity, turbidity, organic matter, chlorophyll, and macronutrients) in behavior of organotin compounds (OTCs) in a marine-coastal ecosystem. The samples were collected seasonally in May, August, and November during 2014. Levels of OTCs were determined in sediments and water column samples by means of gas chromatography–mass spectrometry analysis. Degradation index analyses suggested not recent inputs of TBT at the area of study. However, results submitted a continuous input of TBT into the column water; further, its distribution and degradation pattern were shown to be influenced by salinity, turbidity, particulate organic matter, chlorophyll, and nitrates. These last two parameters, chlorophyll and nitrates, also were very important for sediment samples. Chlorophyll together with high temperatures recorded in the surface sediments triggers biodegradation process of TBT and DBT resulting in high MBT levels while nitrates seemed to promote debutylation process. Furthermore, pH appeared to influence drastically the adsorption/desorption activity of TBT and DBT in sediment. Finally, the Eh obtained suggested a degradation of TBT thanks to the presence of Fe (III) in this compartment. In addition, in fact, the results outlined a possible MBT additional input that contributes to the pollution observed in the study area.

Organotin compounds behavior according to several physicochemical parameters

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams, D. D. (1994) Sediment pore water sampling. In A. Mudroch & S. D. MacKnight (Eds), Handbook of techniques for aquatic sediments sampling, Second Edition CRC Press (pp. 171-202).

  • Adelman, D., Hinga, K. R., & Pilson, M. E. (1990). Biogeochemistry of butyltins in an enclosed marine ecosystem. Environmental Science & Technology, 24, 1027–1032. https://doi.org/10.1021/es00077a012.

    Article  CAS  Google Scholar 

  • APHA, AWWA, WEF. (1998). In L. S. Clesceri, A. E. Greenberg, & A. D. Eaton (Eds.), Standard methods for the examination of water and wastewater (20th ed.). Washington, 996: American Public Health Association.

    Google Scholar 

  • Ayanda, O. S., Fatoki, O. S., Adekola, F. A., & Ximba, B. J. (2012). Fate and remediation of organotin compounds in seawaters and soils. Chemical Science Transactions, 1, 470–481. https://doi.org/10.7598/cst2012.177.

    Article  CAS  Google Scholar 

  • Bancon-Montigny, C., Lespes, G., & Potin-Gautier, M. (2000). Improved routine speciation of organotin compounds in environmental samples by pulsed flame photometric detection. Journal of Chromatography A, 896, 149–158. https://doi.org/10.1016/S0021-9673(00)00595-1.

    Article  CAS  Google Scholar 

  • Bangkedphol, S., Keenan, H. E., Davidson, C., Sakultantimetha, A., & Songsasen, A. (2009). The partition behavior of tributyltin and prediction of environmental fate, persistence and toxicity in aquatic environments. Chemosphere, 77, 1326–1332. https://doi.org/10.1016/j.chemosphere.2009.09.046.

    Article  CAS  Google Scholar 

  • Berg, M., Arnold, C. G., Müller, S. R., Mühlemann, J., & Schwarzenbach, R. P. (2001). Sorption and desorption behavior of organotin compounds in sediment−pore water systems. Environmental Science & Technology, 35, 3151–3157. https://doi.org/10.1021/es010010f.

    Article  CAS  Google Scholar 

  • Briant, N., Bancon-Montigny, C., Freydier, R., Delpoux, S., & Elbaz-Poulichet, F. (2016). Behaviour of butyltin compounds in the sediment pore waters of a contaminated marina (Port Camargue, South of France). Chemosphere, 150, 123–129. https://doi.org/10.1016/j.chemosphere.2016.02.022.

    Article  CAS  Google Scholar 

  • Buggy, C. J., & Tobin, J. M. (2006). Seasonal and spatial distributions of tributyltin in surface sediment of the Tolka Estuary, Dublin, Ireland. Environmental Pollution, 143, 294–303. https://doi.org/10.1016/j.envpol.2005.11.025.

    Article  CAS  Google Scholar 

  • Buhl-Mortensen, L. (1996). Amphipod fauna along offshore-fjord gradient. Journal of Natural History, 30, 23–49. https://doi.org/10.1080/00222939600770031.

    Article  Google Scholar 

  • Carbone, M. E., Spetter, C. V., & Marcovecchio, J. E. (2016). Seasonal and spatial variability of macronutrients and chlorophyll a based on GIS in the South American estuary (Bahía Blanca, Argentina). Environmental Earth Sciences, 75. https://doi.org/10.1007/s12665-016-5516-6.

  • Cassi, R., Tolosa, I., & de Mora, S. (2008). A survey of antifoulants in sediments from Ports and Marinas along the French Mediterranean coast. Marine Pollution Bulletin, 16, 355–359. https://doi.org/10.1002/aoc.315.

    Article  CAS  Google Scholar 

  • Castro, I. B., & Fillmann, G. (2012). High tributyltin and imposex levels in the commercial muricid Thais chocolata from two Peruvian harbor areas. Environmental Toxicology and Chemistry, 31, 955–960. https://doi.org/10.1002/etc.1794.

    Article  CAS  Google Scholar 

  • Choi, M., Moon, H. B., Yu, J., Eom, J. Y., & Choi, H. G. (2010). Temporal trend of butyltins in seawater, sediments, and mussels from Busan Harbor of Korea between 2002 and 2007: tracking the effectiveness of tributylin regulation. Archives of Environmental Contamination and Toxicology, 58, 394–402. https://doi.org/10.1007/s00244-009-9428-2.

    Article  CAS  Google Scholar 

  • Choi, J. Y., Hong, G. H., Ra, K., Kim, K. T., & Kim, K. (2014). Magnetic characteristics of sediment grains concurrently contaminated with TBT and metals near a shipyard in Busan, Korea. Marine Pollution Bulletin, 85, 679–685. https://doi.org/10.1016/j.marpolbul.2014.03.029.

    Article  CAS  Google Scholar 

  • Cima, F., Craig, P. J., & Harrington, C. (2003). Organotin compounds in the environment. In P. J. Craig (Ed.), Organometallic compounds in the environment (pp. 101–149). John Wiley & Sons: Chichester.

    Chapter  Google Scholar 

  • Clark, E. A., Sterritt, R. M., & Lester, J. N. (1988). The fate of tributyltin in the aquatic environment. Environmental Science & Technology, 22, 600–604.

    Article  CAS  Google Scholar 

  • Cole, R. F., Mills, G. A., Hale, M. S., Parker, R., Bolam, T., Teasdale, P. R., Bennett, W. W., & Fones, G. R. (2018). Development and evaluation of a new diffusive gradients in thin-films technique for measuring organotin compounds in coastal sediment pore water. Talanta, 178, 670–678. https://doi.org/10.1016/j.talanta.2017.09.081.

    Article  CAS  Google Scholar 

  • Commendatore, M. G., Franco, M. A., Gomes Costa, P., Castro, I. B., Fillmann, G., Bigatti, G., Esteves, J. L., & Nievas, M. L. (2015). BTs, PAHs, OCPs and PCBs in sediments and bivalve mollusks in a mid-latitude environment from the Patagonian coastal zone. Environmental Toxicology and Chemistry, 34, 2750–2763. https://doi.org/10.1002/etc.3134.

    Article  CAS  Google Scholar 

  • Cruz, A., Anselmo, A. M., Suzuki, S., & Mendo, S. (2015). Tributyltin (TBT): a review on microbial resistance and degradation. Critical Reviews in Environmental Science and Technology, 45, 970–1006. https://doi.org/10.1080/10643389.2014.924181.

    Article  CAS  Google Scholar 

  • Cuadrado, D. G., Carmona, N. B., & Bournod, C. (2011). Biostabilization of sediments by microbial mats in a temperate siliciclastic tidal flat, Bahia Blanca estuary (Argentina). Sedimentary Geology, 237, 95–101. https://doi.org/10.1016/j.sedgeo.2011.02.008.

    Article  Google Scholar 

  • Cuadrado, D. G., Carmona, N. B., & Bournod, C. N. (2012). Mineral precipitation on modern siliciclastic tidal flats colonized by microbial mats. Sedimentary Geology, 271-272, 58–66. https://doi.org/10.1016/j.sedgeo.2012.06.005.

    Article  CAS  Google Scholar 

  • de Castro, Í. B., Perina, F. C., & Fillmann, G. (2012). Organotin contamination in South American coastal areas. Environmental Monitoring and Assessment, 184, 1781–1799. https://doi.org/10.1007/s10661-011-2078-7.

    Article  CAS  Google Scholar 

  • Dean, W. E. J. R. (1974). Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. Journal of Sedimentary Petrology, 44, 242–248.

    CAS  Google Scholar 

  • Del Brio, F., Commendatore, M., Castro, I. B., Gomes Costa, P., Fillmann, G., & Bigatti, G. (2016). Distribution and bioaccumulation of butyltins in the edible gastropod Odontocymbiola magellanica. Marine Biology Research, 12, 608–620. https://doi.org/10.1080/17451000.2016.1169296.

    Article  Google Scholar 

  • Delucchi, F., Narvarte, M. A., Amin, O., Tombesi, N. B., Freije, H., & Marcovecchio, J. (2011). Organotin compounds in sediments of three coastal environments from the Patagonian shore, Argentina. International Journal of Environment and Waste Management, 8, 3. https://doi.org/10.1504/IJEWM.2011.040962.

    Article  CAS  Google Scholar 

  • Di Bonito, M., Breward, N., Crout, N., Smith, B., & Young, S. (2008). Overview of selected soil pore water extraction methods for the determination of potentially toxic elements in contaminated soils: operational and technical aspects. In B. De Vivo, H. E. Belkin, & A. Lima (Eds.), Environmental geochemistry: site characterization, data analysis and case histories (pp. 213–249). Elsevier: Amsterdam.

    Chapter  Google Scholar 

  • Diez, S., Abalos, M., & Bayona, J. M. (2002). Organotin contamination in sediments from the Western Mediterranean enclosures following 10 years of TBT regulation. Water Research, 36, 905–918. https://doi.org/10.1016/S0043-1354(01)00305-0.

  • Dominguez, L. A., Caldas, S. S., Primel, E. G., & Fillmann, G. (2014). The influence of salinity and matrix effect in the determination of antifouling biocides in estuarine waters of Patos Lagoon (southern Brazil). Journal of the Brazilian Chemical Society. https://doi.org/10.5935/0103-5053.20140110.

  • Dong, C. D., Chen, C. F., & Chen, C. W. (2015). Composition and source of butyltins in sediments of Kaohsiung Harbor, Taiwan. Estuarine, Coastal and Shelf Science, 156, 134–143. https://doi.org/10.1016/j.ecss.2014.08.002.

    Article  CAS  Google Scholar 

  • Eberlein, K., & Kattner, G. (1987). Automatic method for determination of orthophosphate and total dissolved phosphorus in the marine environment. Fresenius’ Journal of Analytical Chemistry, 326, 354–357. https://doi.org/10.1007/BF00469784.

    Article  CAS  Google Scholar 

  • Eurachem (1998) The fitness for purpose of analytical methods. A laboratory guide to method validation and related topics. LGC (Teddington) Ltd, London, p 75.

  • Fang, L., Xu, C., Li, J., Borggaard, O. K., & Wang, D. (2017). The importance of environmental factors and matrices in the adsorption, desorption, and toxicity of butyltins: a review. Environmental Science and Pollution Research, 24, 9159–9173. https://doi.org/10.1007/s11356-017-8449-z.

    Article  CAS  Google Scholar 

  • Fernández, E. M. (2017) Dinámica de nutrientes, material orgánica y clorofila a en planicies de marea cubiertas por matas microbianas. http://repositoriodigital.uns.edu.ar/handle/123456789/3601.

  • Fernández, E. M., Spetter, C. V., Martinez, A. M., Cuadrado, D. G., Avena, M. J., & Marcovecchio, J. E. (2016). Carbohydrate production by microbial mats communities in tidal flat from Bahía Blanca Estuary (Argentina). Environmental Earth Sciences, 75(8), 641. https://doi.org/10.1007/s12665-016-5405-z.

  • Ferrer, L., Contardi, E., Andrade, S., Asteasuain, R., Pucci, A., & Marcovecchio, J. (2000). Environmental cadmium and lead concentrations in the Bahía Blanca estuary (Argentina). Potential toxic effects of Cd and Pb on crab larvae. Oceanologia, 43, 493–504.

    Google Scholar 

  • Filipkowska, A., Kowalewska, G., & Pavoni, B. (2014). Organotin compounds in surface sediments of the southern Baltic coastal zone: a study on the main factors for their accumulation and degradation. Environmental Science and Pollution Research, 21, 2077–2087. https://doi.org/10.1007/s11356-013-2115-x.

    Article  CAS  Google Scholar 

  • Furdek, M., Vahčič, M., Ščančar, J., Milačič, R., Kniewald, G., & Mikac, N. (2012). Organotin compounds in seawater and Mytilus galloprovincialis mussels along the Croatian Adriatic Coast. Marine Pollution Bulletin, 64, 189–199. https://doi.org/10.1016/j.marpolbul.2011.12.009.

    Article  CAS  Google Scholar 

  • Furdeck, M., Mikac, N., Bueno, M., Tessier, E., Cavalheiro, J., & Monperrus, M. (2016). Organotin persistence in contaminated marine sediments and porewaters: In situ degradation study using species-specific stable isotopic tracers. Journal of Hazardous Materials, 307, 263–273. https://doi.org/10.1016/j.jhazmat.2015.12.037.

    Article  CAS  Google Scholar 

  • Gelós, E. M., Marcos, O. A., Spagnuolo, J. O., & Schillizzi, R. A. (2004). Textura y Mineralogía de los sedimentos. In M. C. Piccolo & M. Hoffmeyer (Eds.), Ecosistema del Estuario de Bahía Blanca (3rd ed., pp. 43–50). Bahía Blanca: Ediuns.

    Google Scholar 

  • Gómez, E. A., Cuadrado, D. G., & Federici, G. A. (2005). Environmental impact assessment in a harbour area, Argentina. Thalass, An international Journal of Marine Science, 21, 31–38.

    Google Scholar 

  • Gómez, N., Donato, J. C., Giorgi, A., Guasch, H., Mateo, P., & Sabater, S. (2009). La biota de los ríos: los microorganismos autótrofos. In A. Elosegi & S. Sabater (Eds.), Conceptos y Técnicas en Ecología Fluvial (pp. 234–236). España: Valant.

    Google Scholar 

  • Grasshoff, K. (1976). Filtration and storage. In Methods of seawater analysis (pp. 21–24). Weinheim: Verlag Chemie.

    Google Scholar 

  • Grasshoff, K., Erhardt, M., & Kremling, K. (1983). Methods of seawater analysis, 2nd Edition (pp. 365–366). Weinheim: Verlag-Chemie.

    Google Scholar 

  • Guinder, V. A., López-Abbate, M. C., Berasategui, A. A., Negrin, V. L., Zapperi, G., Pratolongo, P. D., Férnandez Severini, M. D., & Popovich, C. A. (2015). Influence of the winter phytoplankton bloom on the settled material in a temperate shallow estuary. Oceanologia, 57, 50–60. https://doi.org/10.1016/j.oceano.2014.10.002.

    Article  Google Scholar 

  • Hoch, M. (2001). Organotin compounds in the environment—an overview. Applied Geochemistry, 16, 719–743. https://doi.org/10.1016/S0883-2927(00)00067-6.

    Article  CAS  Google Scholar 

  • Hoch, M., & Schwesig, D. (2004). Parameters controlling the partitioning of tributyltin (TBT) in aquatic systems. Applied Geochemistry, 19, 323–334. https://doi.org/10.1016/S0883-2927(03)00131-8.

    Article  CAS  Google Scholar 

  • Hoch, M., Alonso Azcarate, J., & Lischick, M. (2002). Adsorption behavior of toxic tributyltin to clayrich sediments under various environmental conditions. Environmental Toxicology and Chemistry, 21, 1390–1397. https://doi.org/10.1002/etc.5620210709.

    Article  CAS  Google Scholar 

  • Hoch, M., Alonso-Azcarate, J., & Lischick, M. (2003). Assessment of adsorption behavior of dibutyltin (DBT) to clay-rich sediments in comparison to the highly toxic tributyltin (TBT). Environmental Pollution, 123, 217–227. https://doi.org/10.1016/S0269-7491(02)00402-5.

    Article  CAS  Google Scholar 

  • Hongxia, L., Guolan, H., & Shugui, D. (1996). Transport of butyltins at the water-air interface and the adsorptive behavior of tributyltin in the surface microlayer. Toxicological & Environmental Chemistry, 55, 257–265. https://doi.org/10.1080/02772249609358340.

    Article  Google Scholar 

  • Huang, J. H., & Matzner, E. (2004). Adsorption and desorption of organotin compounds in organic and mineral soils. European Journal of Soil Science, 55, 693–698. https://doi.org/10.1111/j.1365-2389.2004.00634.x.

    Article  CAS  Google Scholar 

  • IMO, International Maritime Organization. (2005). Antifouling systems. International convention on the control of harmful antifouling systems on ships. London: International Maritime Organization.

    Google Scholar 

  • Iribarne, O., Martinetto, P., Schwindt, E., Botto, F., Bortolus, A., & Borboroglu, P. G. (2003). Evidences of habitat displacement between two common soft-bottom SW Atlantic intertidal crabs. Journal of Experimental Marine Biology and Ecology, 296, 167–182. https://doi.org/10.1016/S0022-0981(03)00318-6.

    Article  Google Scholar 

  • IUPAC- International Union of Pure and Applied Chemistry. (2002). Analytical, applied, clinical, inorganic, and physical chemistry divisions interdivisional working party for harmonization of quality assurance schemes for analytical laboratories. Pure and Applied Chemistry, 74, 835–855.

    Article  Google Scholar 

  • Jin, J., Yang, L., Chan, S. M., Luan, T., Li, Y., & Tam, N. F. (2011). Effect of nutrients on the biodegradation of tributyltin (TBT) by alginate immobilized microalga, Chlorella vulgaris, in natural river water. Journal of Hazardous Materials, 185, 1582–1586. https://doi.org/10.1016/j.jhazmat.2010.09.075.

    Article  CAS  Google Scholar 

  • Kaspar, H. F. (1983). Denitrification, nitrate reduction to ammonium, and inoganic nitrogen pools in intetidal sediments. Marine Biology, 74(2), 133-139. https://doi.org/10.1007/BF00413916

  • Koroleff, F. (1969) Direct determination of ammonia in natural waters as indophenol blue. ICES C.M. 1969/C: 9. Hydrol Commun p. 4.

  • La Colla, N. S., Botté, S. E., Oliva, A. L., & Marcovecchio, J. E. (2017). Tracing Cr, Pb, Fe and Mn occurrence in the Bahía Blanca estuary through commercial fish species. Chemosphere, 175, 286–293. https://doi.org/10.1016/j.chemosphere.2017.02.002.

    Article  CAS  Google Scholar 

  • Laitano, M. V., Castro, Í. B., Costa, P. G., Fillmann, G., & Cledón, M. (2015). Butyltin and PAH contamination of Mar del Plata port (Argentina) sediments and their influence on adjacent coastal regions. Bulletin of Environmental Contamination and Toxicology, 95, 513–520. https://doi.org/10.1007/s00128-015-1637-y.

    Article  CAS  Google Scholar 

  • López Abbate, M. C., Molinero, J. C., Guinder, V. A., Perillo, G. M., Freije, R. H., Sommer, U., Spetter, C. V., & Marcovecchio, J. E. (2017). Time-varying environmental control of phytoplankton in a changing estuarine system. Science of the Total Environment, 609, 1390–1400. https://doi.org/10.1016/j.scitotenv.2017.08.002.

    Article  CAS  Google Scholar 

  • Lorenzen, C. J. (1967). Determination of chlorophyll and pheopigments: spectrophotometric equations. Limnology and Oceanography, 12, 343–346. https://doi.org/10.4319/lo.1967.12.2.0343.

    Article  CAS  Google Scholar 

  • MacIntyre, H. L., Geider, R. J., & Miller, D. C. (1996). Microphytobenthos: the ecological role of “the secret garden” of unvegetated, shallow-water marine habitats. I: distribution, abundance and primary production. Estuaries and Coasts. https://doi.org/10.2307/1352224.

  • Marcic, C., Le Hecho, I., Denaix, L., & Lespes, G. (2006). TBT and TPhT persistence in a sludged soil. Chemosphere, 65, 2322–2332. https://doi.org/10.1016/j.chemosphere.2006.05.007.

    Article  CAS  Google Scholar 

  • Martin, J. B., Hartl, K. M., Corbett, D. R., Swarzenski, P. W., & Cable, J. E. (2003). A multilevel pore-water sampler for permeable sediments. Journal of Sedimentary Research, 73, 128–132. https://doi.org/10.1306/070802730128.

    Article  Google Scholar 

  • Martínez, M. L., Piol, M. N., Nudelman, N. S., & Guerrero, N. R. V. (2017). Tributyltin bioaccumulation and toxic effects in freshwater gastropods Pomacea canaliculata after a chronic exposure: field and laboratory studies. Ecotoxicology, 26, 691–701. https://doi.org/10.1007/s10646-017-1801-8.

    Article  CAS  Google Scholar 

  • Michel, P., & Averty, B. (1999). Distribution and fate of tributyltin in surface and deep waters of the northwestern Mediterranean. Environmental Science & Technology, 33, 2524–2528. https://doi.org/10.1021/es981254b.

    Article  CAS  Google Scholar 

  • Ogbomida, E. T., & Ezemonye, L. I. (2016). Tributyltin and its derivative in water samples of National Inland Water Way Authority Harbour of Warri, Delta State, Nigeria. Organic Chemistry Current Reserch. https://doi.org/10.4172/2161-0401.1000158.

  • Perillo, G. M. E., Piccolo, M. C., Parodi, E., & Freije, R. H. (2001). The Bahía Blanca Estuary, Argentina. In U. Seeliger & B. Kjerfve (Eds.), Coastal marine ecosystems of Latin America, ecological studies (pp. 205–217). Berlin: Springer.

    Chapter  Google Scholar 

  • Perillo, G. M. E., Piccolo, M. C., Palma, E. D., Pérez, D. E. & Pierini, J. O. (2007) Oceanografía física. In: M.C. Piccolo & M.S. Hoffmeyer (Eds.) Ecosistemas del estuario de Bahía Blanca (pp. 61-67). Bahía Blanca: ediUNS (ISBN 987-9281-96-9).

  • Piccolo, M. C. & Diez, P. G. (2004). Meteorología del Puerto Coronel Rosales. In: M.C. Piccolo & M.S. Hoffmeyer (Eds). Ecosistema del Estuario de Bahía Blanca (pp. 87-91). Bahía Blanca: ediUNS (ISBN 987-9281-96-9).

  • Piccolo, M. C., Perillo, G. M. E., & Melo, W. D. (2008). The Bahía Blanca Estuary: an integrated overview of its geomorphology and dynamics. In R. J. Neves, J. Baretta, & M. D. Mateus (Eds.), Perspectives on integrated coastal zone management in South America (pp. 221–232). Portugal: IST Press.

    Google Scholar 

  • Pinochet, H., Tessini, C., Bravo, M., Quiroz, W., & De Gregori, I. (2009). Butyltin compounds and their relation with organic matter in marine sediments from San Vicente Bay—Chile. Environmental Monitoring and Assessment, 155, 341–353. https://doi.org/10.1007/s10661-008-0439-7.

    Article  CAS  Google Scholar 

  • Point, D., Monperrus, M., Tessier, E., Amouroux, D., Chauvaud, L., Thouzeau, G., & Clavier, J. (2007). Biological control of trace metal and organometal benthic fluxes in a eutrophic lagoon (Thau Lagoon, Mediterranean Sea, France). Estuarine, Coastal and Shelf Science. https://doi.org/10.1016/j.ecss.2006.11.013.

  • Pougnet, F., Schäfer, J., Dutruch, L., Garnier, C., Tessier, E., Dang, D. H., Lanceleur, L., Mullot, J. U., Lenoble, V., & Blanc, G. (2014). Sources and historical record of tin and butyl-tin species in a Mediterranean bay (Toulon Bay, France). Environmental Science and Pollution Research, 21, 6640–6651. https://doi.org/10.1007/s11356-014-2576-6.

    Article  CAS  Google Scholar 

  • Quintas, P. Y., Oliva, A. L., Arias, A., Domini, C. E., Alvarez, M. B., Garrido, M., & Marcovecchio, J. E. (2016). Seasonal changes in organotin compounds in sediments from the Bahía Blanca Estuary. Environmental Earth Sciences. https://doi.org/10.1007/s12665-016-5471-2.

  • Quintas, P. Y., Arias, A. H., Oliva, A. L., Domini, C. E., Alvarez, M. B., Garrido, M., & Marcovecchio, J. E. (2017). Organotin compounds in Brachidontes rodriguezii mussels from the Bahía Blanca Estuary, Argentina. Ecotoxicology and environmental safety, 145, 518–527. https://doi.org/10.1016/j.ecoenv.2017.07.052.

    Article  CAS  Google Scholar 

  • Ranke, J., & Jastorff, B. (2000). Multidimensional risk analysis of antifouling biocides. Environmental Science and Pollution Research, 7, 105–114. https://doi.org/10.1065/espr199910.003.

    Article  CAS  Google Scholar 

  • Sabah, A., Bancon-Montigny, C., Rodier, C., Marchand, P., Delpoux, S., Ijjaali, M., & Tournou, M. G. (2016). Occurrence and removal of butyltin compounds in a waste stabilisation pond of a domestic waste water treatment plant of a rural French town. Chemosphere, 144, 2497–2506. https://doi.org/10.1016/j.chemosphere.2015.11.006.

    Article  CAS  Google Scholar 

  • Sakultantimetha, A., Keenan, H. E., Beattie, T. K., Bangkedphol, S., & Cavoura, O. (2011a). Bioremediation of tributyltin contaminated sediment: degradation enhancement and improvement of bioavailability to promote treatment processes. Chemosphere, 83, 680–686. https://doi.org/10.1016/j.chemosphere.2011.02.024.

    Article  CAS  Google Scholar 

  • Sakultantimetha, A., Keenan, H. E., Beattie, T. K., Bangkedphol, S., & Cavoura, O. (2011b). Effects of organic nutrients and growth factorson biostimulation of tributyltin removal by sediment microorganisms and Enterobacter cloacae. Applied Microbiology and Biotechnology, 90, 353–360. https://doi.org/10.1007/s00253-010-3023-3.

    Article  CAS  Google Scholar 

  • Santisteban, J. I., Mediavilla, R., López-Pamo, E., Dabrio, C. J., Ruiz Zapata, M. B., Gil García, M. J., Castaño, S., & Martínez-Alfaro, P. E. (2004). Loss on ignition: a qualitative or quantitative method for organic matter and carbonate mineral content in sediments? Journal of Paleolimnology, 32, 287–299. https://doi.org/10.1023/B:JOPL.0000042999.30131.5b.

    Article  Google Scholar 

  • Santos, M. M., Vieira, N., Reis-Henriques, M. A., Santos, A. M., Gomez-Ariza, J. L., Giraldez, I., & Ten Hallers-Tjabbes, C. C. (2004). Imposex and butyltin contamination off the Oporto Coast (NW Portugal): a possible effect of the discharge of dredged material. Environment International, 30, 793–798. https://doi.org/10.1016/j.envint.2004.01.005.

    Article  CAS  Google Scholar 

  • Severini, M. D. F., Botté, S. E., Hoffmeyer, M. S., & Marcovecchio, J. E. (2009). Spatial and temporal distribution of cadmium and copper in water and zooplankton in the Bahia Blanca estuary, Argentina. Estuarine, Coastal and Shelf Science, 85, 57–66. https://doi.org/10.1016/j.ecss.2009.03.019.

    Article  CAS  Google Scholar 

  • Shue, M. F., Chen, T. C., Bellotindos, L. M., & Lu, M. C. (2014). Tributyltin distribution and producing androgenic activity in water, sediment, and fish muscle. Journal of Environmental Science and Health, 49, 432–438. https://doi.org/10.1080/03601234.2014.894780.

    Article  CAS  Google Scholar 

  • Simpson, S. L., Batley, G. E., Chariton, A. A., Stauber, J. L., King, C. K., Chapman, J. C., et al. (2005). Handbook for sediments quality assessment. Bangor: CSIRO.

    Google Scholar 

  • Spetter, C. V., Buzzi, N. S., Fernández, E. M., Cuadrado, D. G., & Marcovecchio, J. E. (2015). Assessment of the physicochemical conditions sediments in a polluted tidal flat colonized by microbial mats in Bahía Blanca Estuary (Argentina). Marine Polluted Bulletin, 91, 491–505. https://doi.org/10.1016/j.marpolbul.2014.10.008.

    Article  CAS  Google Scholar 

  • Strickland, J.D.H. & Parson, T.R. (1968) A practical handbook of seawater analysis. Fisheries Research Board of Canada: Bulletin 167.

  • Tang, C. H., Hsu, C. H., & Wang, W. H. (2010). Butyltin accumulation in marine bivalves under field conditions in Taiwan. Marine Environmental Research, 70, 125–132. https://doi.org/10.1016/j.marenvres.2010.03.011.

    Article  CAS  Google Scholar 

  • Technicon Autoanalyzer II®. (1973) Industrial Methods N° 186–72 W/B.

  • Tessier, E., Amouroux, D., Morin, A., Christian, L., Thybaud, E., Vindimian, E., & Donard, O. F. (2007). (Tri) Butyltin biotic degradation rates and pathways in different compartments of a freshwater model ecosystem. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2007.08.047.

  • Treguer, P. & Le Corre, P. (1975a) Analyse des sels nutritifs sur autoanalyzer II. Manuel D‟Analyse des Sels Nutritifs dans L‟Eau de Mer (pp. 11-22), France: Univ. Bretagne Occidentale.

  • Treguer, P. & Le Corre, P. (1975b) Analyse des sels nutritifs sur autoanalyzer II. Manuel D‟Analyse des Sels Nutritifs dans L‟Eau de Mer, (pp. 34-49), France: Univ. Bretagne Occidentale.

  • Tsnag, C. K., Lau, P. S., Tam, N. F. Y., & Wong, Y. S. (1999). Biodegradation capacity of tributyltin by two Chlorella species. Environmental Pollution, 105, 289–297. https://doi.org/10.1016/S0269-7491(99)00047-0.

    Article  Google Scholar 

  • Vidal, J. M., Vega, A. B., Arrebola, F. J., González-Rodríguez, M. J., Sánchez, M. M., & Frenich, A. G. (2003). Trace determination of organotin compounds in water, sediment and mussel samples by low-pressure gas chromatography coupled to tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 17, 2099–2106. https://doi.org/10.1002/rcm.1152.

    Article  CAS  Google Scholar 

  • Yonezawa, Y., Fukui, M., Yoshida, T., Ochi, A., Tanaka, T., Noguti, Y., Kowata, T., Sato, Y., Masunaga, S., & Urushigawa, Y. (1994). Degradation of tri-n-butyltin in Ise Bay sediment. Chemosphere, 29, 1349–1356. https://doi.org/10.1016/0045-6535(94)90265-8.

    Article  CAS  Google Scholar 

  • Zapperi, G., Pratolongo, P., Piovan, M. J., & Marcovecchio, J. E. (2016). Benthic-Pelagic coupling in an intertidal mudflat in the Bahía Blanca Estuary (SW Atlantic). Journal of Coastal Research, 32(3), 629-637. https://doi.org/10.2112/JCOASTRES-D-14-00064.1

  • Zhang, C. N., Zhang, J. L., Huang, Y., Ren, H. T., Guan, S. H., & Zeng, Q. H. (2017). Dibutyltin depressed immune functions via NF-κB, and JAK/STAT signaling pathways in zebrafish (Danio rerio). Environmental Toxicology, 33, 104–111. https://doi.org/10.1002/tox.22502.

    Article  CAS  Google Scholar 

  • ZS-ZF. (2007) Zona Franca Buenos Aires Sur S.A., Concesionaria de la Zona Franca Bahía Blanca - Coronel Rosales. http://www.zfzonasur.com.ar. Accessed April 2018.

Download references

Acknowledgements

The authors would like to thank the IADO executive directors and Chemical Oceanography Area’s staff.

Funding

This research was supported by a doctoral grant funded by the National Council of Scientific and Technological Research (CONICET-Argentina) and was part of the PhD thesis of Pamela Y. Quintas and Eleonora M. Fernández. Funding was provided through research grants by CONICET (PIP D-738 2011), National Agency for Promotion of Science and Technology-ANPCyT (PICT 2015-0709, PICT 2012-2794), and National South University-UNS (PGI 24/Q086, PGI 24/ZQ12, PGI 24/ZQ15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela Y. Quintas.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

● OTCs were analyzed in sediment and estuarine water from Rosales Port (Argentina) where a continuous input of TBT was assessed.

● MBT inputs were demonstrated to be originated apart from the rest of the OTCs.

● Several physicochemical parameters appeared to be critical in OTCs behavior.

● Butyltin Degradation Index analyses suggested aged TBT inputs possibly under a general degradation process.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quintas, P.Y., Fernández, E.M., Spetter, C.V. et al. Preliminary studies about the role of physicochemical parameters on the organotin compound dynamic in a South American estuary (Bahía Blanca, Argentina). Environ Monit Assess 191, 127 (2019). https://doi.org/10.1007/s10661-019-7260-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7260-3

Keywords

Navigation