Skip to main content
Log in

Root structural changes of two remediator plants as the first defective barrier against industrial pollution, and their hyperaccumulation ability

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In the present day, plants are increasingly being utilized to safeguard the environment. In this study, we used Salsola crassa M. B. and Suaeda maritima L. Dumort for phytoremediation of water contaminated with heavy metals and simultaneous examination of the effect of industrial pollution on their root structures. After irrigation of a treatment group with wastewater and a control group with fresh water for 3 months, we fixed the root parts in the FAA fixator for developmental study, and measured the concentrations of Co, Ni, Zn, As, Cu, and Pb in the roots, shoots, soil, and irrigating water. The plants irrigated with wastewater showed significant accumulation of heavy metals in the roots and some translocation of heavy metals from the roots to the shoots. We also performed an experiment with two 0.3 m3 pools to more closely study the feasibility of these plants for filtering water of contaminants, including mineral compounds, and altering its chemical characteristics. In our anatomical studies, the cells of the treatment roots showed irregularities and abnormal appearances in all tissue layers. The diameter and area of the xylem and the size of the cortical parenchyma have increased in the treatment plants of both species, confirmed by Stereolite software. Phytoremediation studies indicated that S. crassa accumulated As, Cu, Zn, Pb, Co, and Ni, and S. maritima accumulated As, Co, Zn, and Cu. S. crassa accumulated more heavy metals in its roots, whereas S. maritima accumulated more in its shoots. The biological oxygen demand and chemical oxygen demand were also significantly reduced in the wastewater passed through pools with S. crassa. Our results indicate that both genera are hyperaccumulators of heavy metals and therefore hold promise for industrial wastewater treatment, especially the absorption of As.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Arora, S., Patel, P. N., Vanza, M. J., & Rao, G. G. (2014). Isolation and characterization of endophytic bacteria colonizing halophyte and other salt tolerant plant species from coastal Gujarat. African Journal of Microbiology Research, 8(17), 1779–1788.

    Article  Google Scholar 

  • Baker, A. J. M., Reeves, R. D., & Hajar, A. S. M. (1994). Heavy metal accumulation and tolerance in British population of the metallophyte Thalaspi caerulesens J. and C. Presl (Brassicaeae). The New Phytologist, 127, 61–68.

    Article  CAS  Google Scholar 

  • Barberon, M., & Geldner, N. (2014). Radial transport of nutrients: the plant root as a polarized epithelium. Plant Physiology, 166, 528–537.

    Article  Google Scholar 

  • Bareen, F.-e., & Tahira, S. A. (2011). Metal accumulation potential of wild plants in tannery effluent contaminated soil of Kasur, Pakistan: field trials for toxic metal cleanup using Suaeda fruticosa. Journal of Hazardous Materials, 186(1), 443–450.

    Article  CAS  Google Scholar 

  • Cao, X., & Ma, L. Q. (2004). Effects of compost and phosphate on plant arsenic accumulation from soils near pressure-treated wood. Environmental Pollution, 132(3), 435–442.

    Article  CAS  Google Scholar 

  • Cao, X., Ma, L. Q., & Shiralipour, A. (2003). Effects of compost and phosphate amendments on arsenic mobility in soils and arsenic uptake by the hyperaccumulator, Pteris vittata L. Environmental Pollution, 126(2), 157–167.

    Article  CAS  Google Scholar 

  • Cristaldi, A., Oliveri, C. G., Jho, E. H., Zuccarello, P., Grasso, A., Copat, C., & Ferrante, M. (2017). Phytoremediation of contaminated soils by heavy metals and PAHs. A brief review. Environmental Technology and Innovation, 8, 309–326.

    Article  Google Scholar 

  • D’Alessandro, D., Arletti, S., Azara, A., Buffoli, M., Capasso, L., Cappuccitti, A., Casuccio, A., Cecchini, A., Costa, G., De Martino, A. M., Dettori, M., Di Rosa, E., Fara, G. M., Ferrante, M., Giammanco, G., Lauria, A., Melis, G., Moscato, U., Oberti, I., Patrizio, C., Petronio, M. G., Rebecchi, A., Romano Spica, V., Settimo, G., Signorelli, C., & Capolongo, S. (2017). Strategies for disease prevention and health promotion in urban areas: the Erice 50 charter. Annali Di Igiene Medicina Preventiva E Di ComunitàISSN: 1120–9135, 29(6), 481–493. https://doi.org/10.7416/ai.2017.2179.

    Article  Google Scholar 

  • El-Ghamery, A. A., Sadek, A. M., & Abd Elbar, O. H. (2015). Root anatomy of some species of Amaranthus (Amaranthaceae) and formation of successive cambia. Annals of Agricultural Science, 60(1), 53–60.

    Article  Google Scholar 

  • Eslamzadeh, T. (2006). Salicornia europeae, a bioaccumulator in Maharloo salt lake region. International Journal of Soil Science, 1(1), 75–80.

    Article  CAS  Google Scholar 

  • Fahn, A., & Zimmermann, M. H. (1982). Development of successive cambia in Atriplex halimus (Chenopodiaceae). Botanical Gazette, 143, 353–357.

    Article  Google Scholar 

  • Ghosh, M., & Singh, S. P. (2005). A review on phytoremediation of heavy metals and utilization of its by-products. Applied Ecology and Environmental Research, 3, 1–18.

    Article  Google Scholar 

  • Gomes, M. P., de Sá e Melo Marques, T. C. L. L., de Oliveira Gonçalves Nogueira, M., de Castro, E. M., & Soares, Â. M. (2011). Ecophysiological and anatomical changes due to uptake and accumulation of heavy metal in Brachiaria decumbens. Scientia Agricola (Piracicaba, Braz.), 68(5), 566–573.

    Article  CAS  Google Scholar 

  • Grigore, M. N., Toma, C. (2007). Histo-anatomical strategies of chenopodiaceae halophytes: adaptive, ecological and evolutionary implications. WSEAS Transcriptions on Biology and Biomedicine, 4(12), 204-218.

  • Grigore, M. N., Ivanescu, L., & Toma, C. (2014). Halophytes: an integrative anatomical study. Springer International Publishing. https://doi.org/10.1007/978-3-319-05729-3.

  • Hossain, M. A., Piyatida, P., da Silva, J. A. T., & Fujita, M. (2012). Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. Journal of Botany, 2012, 1–37.

    Article  Google Scholar 

  • Ji, J. (2015). Research status on Suaeda heteroptera Kitag. Aquatic Science and Technology, 3(2), 23–32.

    Article  Google Scholar 

  • Kraehmer, H., & Baur, P. (2013). In: Weed anatomy (Vol. 8, p. 258). A John Wiley & Sons, Ltd. Publication. https://doi.org/10.1002/9781118503416

  • Krzesłowska, M. (2011). The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy. Acta Physiologiae Plantarum, 33, 35–51.

    Article  Google Scholar 

  • Kurkova, E. B., Myasoedov, N. A., Kotov, L. M., Lunkov, R. V., Shamsutdinov, N. Z., & Balnokin, Y. V. (2002). Specific structure of root cells of the salt-accumulating halophyte Suaeda altissima L. Doklady Biological Sciences, 387(1), 573–576.

    Article  CAS  Google Scholar 

  • Lou, L. Q., Ye, Z. H., Lin, A. J., & Wong, M. H. (2010). Interaction of arsenic and phosphate on their uptake and accumulation in Chinese brake fern. International Journal of Phytoremediation, 12(5), 487–502.

    Article  CAS  Google Scholar 

  • Lutts, S., & Lefevre, I. (2015). How can we take advantage of halophyte properties to cope with heavy metal toxicity in salt-affected areas? Annals of Botany, 115, 509–528.

    Article  CAS  Google Scholar 

  • Maestri, E., & Marmiroli, N. (2011). Transgenic plants for phytoremediation. International Journal of Phytoremediation, 1, 264–279.

    Article  Google Scholar 

  • Manousaki, E., & Kalogerakis, N. (2011). Halophytes present new opportunities in phytoremediation of heavy metals and saline soils. Industrial and Engineering Chemistry Research, 50, 656–660.

    Article  CAS  Google Scholar 

  • Odjegba, V. J., & Fasidi, I. O. (2007). Phytoremediation of heavy metals by Eichhornia crassipes. The Environmentalist, 27(3), 349–355.

    Article  Google Scholar 

  • Ostroumov, S. A., & Shestakova, T. V. (2009). Decreasing the measurable concentrations of Cu, Zn, Cd, and Pb in the water of the experimental systems containing Ceratophyllum demersum: the phytoremediation potential. Doklady Biological Sciences, 428, 444–447.

    Article  CAS  Google Scholar 

  • Peer, W., Baxter, I., Richards, E., Freeman, J., & Murphy, A. (2005). Phytoremediation and hyperaccumulator plants. In M. J. Tamás & E. Martinoia (Eds.), Molecular biology of metal homeostasis and detoxification. (Topics in current genetics) (Vol. 14, pp. 299–340). Berlin: Springer.

    Chapter  Google Scholar 

  • Pilon-Smits, E. A. H. (2005). Phytoremediation. Annual Review of Plant Biology, 56, 15–39.

    Article  CAS  Google Scholar 

  • Purakayastha, T. J., Viswanath, T., Bhadraray, S., Chhonkar, P. K., Adhikari, P. P., & Suribabu, K. (2008). Phytoextraction of zinc, copper, nickel and lead from a contaminated soil by different species of Brassica. International Journal of Phytoremediation, 10(1), 61–72.

    Article  CAS  Google Scholar 

  • Redondo-Gomez, S., Mateos-Naranjo, E., Vecino-Bueno, I., & Feldman, S. R. (2011). Accumulation and tolerance characteristics of chromium in a cord grass Cr-hyperaccumulator, Spartina argentinensis. Journal of Hazardous Materials, 185(2–3), 826–829.

    Google Scholar 

  • Rice, E. W., Baird, R. B., Eaton, A. D., & Clesceri, L. S. (2012). Standard methods for the examination of water and wastewater. Washington DC: American Public Health Association/American Water Works Association/Water Environment Federation.

    Google Scholar 

  • Rosa, G., Peralta-videa, J. R., Montes, M., & Parsons, J. L. (2004). Cadmium uptake and translocation in tumbleweed (Salsola Kali) a potential Cd-hyperaccumulator desert plant species: ICP/OES and XAS studies. Chemosphere, 55, 1159–1168.

    Article  Google Scholar 

  • Ruzin, S. E. (1999). Plant microtechnique and microscopy (pp. 322). Oxford, New York: Oxford University Press.

  • Shekhawat, V. P. S., Kumar, A., & Neumann, K. H. (2006). Bio-reclamation of secondary salinized soils using halophytes. In M. Öztürk, Y. Waisel, M. A. Khan, & G. Görk (Eds.), Biosaline agriculture and salinity tolerance in plants (pp. 147–154). Switzerland: Birkhäuser Basel.

    Chapter  Google Scholar 

  • Usha Shri, P., & Pillay, V. (2017). Excess of soil zinc interferes with uptake of other micro and macro nutrients in Sorghum bicolor (L.) plants. Indian Journal of Plant Physiology, 22(3), 304–308.

    Article  Google Scholar 

  • Vlatko, K., SlaDana, K., Miljan, B., Dijana, D., & Nada, B. (2014). Bioaccumulation and translocation of heavy metals by Ceratophyllum demersum from the Skadar Lake, Montenegro. Journal of the Serbian Chemical Society, 79(11), 1445–1460.

    Article  Google Scholar 

  • Yoon, J., Cao, X., Zhou, Q., & Ma, L. Q. (2006). Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. The Science of the Total Environment, 368, 456–464.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Mr. H. Argasi at the Research Consultation Center (RCC) at Shiraz University of Medical Sciences for his invaluable assistance in editing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parissa Jonoubi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi Jahromi, N.S., Jonoubi, P., Majd, A. et al. Root structural changes of two remediator plants as the first defective barrier against industrial pollution, and their hyperaccumulation ability. Environ Monit Assess 191, 148 (2019). https://doi.org/10.1007/s10661-019-7240-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7240-7

Keywords

Navigation