Atmo-ecometabolomics: a novel atmospheric particle chemical characterization methodology for ecological research

Abstract

Aerosol particles play important roles in processes controlling the composition of the atmosphere and function of ecosystems. A better understanding of the composition of aerosol particles is beginning to be recognized as critical for ecological research to further comprehend the link between aerosols and ecosystems. While chemical characterization of aerosols has been practiced in the atmospheric science community, detailed methodology tailored to the needs of ecological research does not exist yet. In this study, we describe an efficient methodology (atmo-ecometabolomics), in step-by-step details, from the sampling to the data analyses, to characterize the chemical composition of aerosol particles, namely atmo-metabolome. This method employs mass spectrometry platforms such as liquid and gas chromatography mass spectrometries (MS) and Fourier transform ion cyclotron resonance MS (FT-ICR-MS). For methodology evaluation, we analyzed aerosol particles collected during two different seasons (spring and summer) in a low-biological-activity ecosystem. Additionally, to further validate our methodology, we analyzed aerosol particles collected in a more biologically active ecosystem during the pollination peaks of three different representative tree species. Our statistical results showed that our sampling and extraction methods are suitable for characterizing the atmo-ecometabolomes in these two distinct ecosystems with any of the analytical platforms. Datasets obtained from each mass spectrometry instrument showed overall significant differences of the atmo-ecometabolomes between spring and summer as well as between the three pollination peak periods. Furthermore, we have identified several metabolites that can be attributed to pollen and other plant-related aerosol particles. We additionally provide a basic guide of the potential use ecometabolomic techniques on different mass spectrometry platforms to accurately analyze the atmo-ecometabolomes for ecological studies. Our method represents an advanced novel approach for future studies in the impact of aerosol particle chemical compositions on ecosystem structure and function and biogeochemistry.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Achotegui-Castells, A., Sardans, J., Ribas, À., & Peñuelas, J. (2013). Identifying the origin of atmospheric inputs of trace elements in the Prades Mountains (Catalonia) with bryophytes, lichens, and soil monitoring. Environmental Monitoring and Assessment, 185(1), 615–629.

    CAS  Article  Google Scholar 

  2. Andreae, M. O., & Crutzen, P. J. (1997). Atmospheric aerosols: biogeochemical sources and role in atmospheric chemistry. Science, 276(5315), 1052–1058.

    CAS  Article  Google Scholar 

  3. Arnold, A. E., Maynard, Z., Gilbert, G. S., Coley, P. D., & Kursar, T. A. (2000). Are tropical fungal endophytes hyperdiverse? Ecology Letters, 3(4), 267–274.

    Article  Google Scholar 

  4. Ayers, G. P., & Gras, J. L. (1991). Seasonal relationship between cloud condensation nuclei and aerosol methanesulphonate in marine air. Nature, 353(6347), 834–835.

    CAS  Article  Google Scholar 

  5. Azad K. R., & Shulaev, V. (2018). Metabolomics technology and bioinformatics for precision medicine. Briefings in bioinformatics, bxx170, https://doi.org/10.1093/bib/bbx170.

  6. Baker, A. R., Kelly, S. D., Biswas, K. F., Witt, M., & Jickells, T. D. (2003). Atmospheric deposition of nutrients to the Atlantic Ocean. Geophysical Research Letters, 30(24).

  7. Baustian, K. J., Cziczo, D. J., Wise, M. E., Pratt, K. A., Kulkarni, G., Hallar, A. G., & Tolbert, M. A. (2012). Importance of aerosol composition, mixing state, and morphology for heterogeneous ice nucleation: a combined field and laboratory approach. Journal of Geophysical Research: Atmospheres, 117, D06217.

    Article  CAS  Google Scholar 

  8. Böttcher, C., Roepenack-Lahaye, E. v., Willscher, E., Scheel, D., & Clemens, S. (2007). Evaluation of matrix effects in metabolite profiling based on capillary liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry. Analytical Chemistry, 79(4), 1507–1513.

    Article  CAS  Google Scholar 

  9. Bundy, J. G., Davey, M. P., & Viant, M. R. (2008). Environmental metabolomics: a critical review and future perspectives. Metabolomics, 5(1), 3–21.

    Article  CAS  Google Scholar 

  10. Canagaratna, M. R., Jayne, J. T., Jimenez, J. L., Allan, J. D., Alfarra, M. R., Zhang, Q., Onasch, T. B., Drewnick, F., Coe, H., Middlebrook, A., Delia, A., Williams, L. R., Trimborn, A. M., Northway, M. J., DeCarlo, P. F., Kolb, C. E., Davidovits, P., & Worsnop, D. R. (2007). Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer. Mass Spectrometry Reviews, 26(2), 185–222.

    CAS  Article  Google Scholar 

  11. Carlton, A. G., Pinder, R. W., Bhave, P. V., & Pouliot, G. A. (2010). To what extent can biogenic SOA be controlled? Environmental Science & Technology, 44(9), 3376–3380.

    CAS  Article  Google Scholar 

  12. Carnicer, J., Sardans, J., Stefanescu, C., Ubach, A., Bartrons, M., Asensio, D., & Peñuelas, J. (2015). Global biodiversity, stoichiometry and ecosystem function responses to human-induced C–N–P imbalances. Journal of Plant Physiology, 172, 82–91.

    CAS  Article  Google Scholar 

  13. Claudino, W. M., Quattrone, A., Biganzoli, L., Pestrin, M., Bertini, I., & Di Leo, A. (2007). Metabolomics: available results, current research projects in breast cancer, and future applications. Journal of Clinical Oncology, 25(19), 2840–2846.

    CAS  Article  Google Scholar 

  14. de Mendiburu, F. (2015). Agricolae: statistical procedures for agricultural research. R package version, 1, 2–3 http://CRAN.R-project.org/package=agricolae.

    Google Scholar 

  15. De Vos, R. C., Moco, S., Lommen, A., Keurentjes, J. J., Bino, R. J., & Hall, R. D. (2007). Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nature Protocols, 2(4), 778–791.

    Article  CAS  Google Scholar 

  16. Després, V. R., Alex Huffman, J., Burrows, S. M., Hoose, C., Safatov, A. S., Buryak, G., et al. (2012). Primary biological aerosol particles in the atmosphere: a review. Tellus B, 64(15598), 1–58.

    Google Scholar 

  17. Ding, J., Sorensen, C. M., Zhang, Q., Jiang, H., Jaitly, N., Livesay, E. A., Shen, Y., Smith, R. D., & Metz, T. O. (2007). Capillary LC coupled with high-mass measurement accuracy mass spectrometry for metabolic profiling. Analytical Chemistry, 79(16), 6081–6093.

    CAS  Article  Google Scholar 

  18. Elser, J. J., Dobberfuhl, D. R., MacKay, N. A., & Schampel, J. H. (1996). Organism size, life history, and N:P stoichiometry. BioScience, 46(9), 674–684.

    Article  Google Scholar 

  19. Fageria, N. K., Filho, M. P. B., Moreira, A., & Guimarães, C. M. (2009). Foliar fertilization of crop plants. Journal of Plant Nutrition, 32(6), 1044–1064.

    CAS  Article  Google Scholar 

  20. Feng, J., Wang, Y., Zhao, J., Zhu, L., Bian, X., & Zhang, W. (2011). Source attributions of heavy metals in rice plant along highway in eastern China. Journal of Environmental Sciences, 23(7), 1158–1164.

    CAS  Article  Google Scholar 

  21. Fernández, V., & Brown, P. H. (2013). From plant surface to plant metabolism: the uncertain fate of foliar-applied nutrients. Frontiers in Plant Science, 4, 289.

    Article  Google Scholar 

  22. Fiehn, O. (2002). Metabolomics - the link between genotypes and phenotypes. Plant Molecular Biology, 48(1–2), 155–171.

    CAS  Article  Google Scholar 

  23. Fukusaki, E., & Kobayashi, A. (2005). Plant metabolomics: potential for practical operation. Journal of Bioscience and Bioengineering, 100(4), 347–354.

    CAS  Article  Google Scholar 

  24. Fuzzi, S., Andreae, M. O., Huebert, B. J., Kulmala, M., Bond, T. C., Boy, M., Doherty, S. J., Guenther, A., Kanakidou, M., Kawamura, K., Kerminen, V. M., Lohmann, U., Russell, L. M., & Pöschl, U. (2006). Critical assessment of the current state of scientific knowledge, terminology, and research needs concerning the role of organic aerosols in the atmosphere, climate, and global change. Atmospheric Chemistry and Physics, 6(7), 2017–2038.

    CAS  Article  Google Scholar 

  25. Gargallo-Garriga, A., Sardans, J., Pérez-Trujillo, M., Oravec, M., Urban, O., Jentsch, A., Kreyling, J., Beierkuhnlein, C., Parella, T., & Peñuelas, J. (2015). Warming differentially influences the effects of drought on stoichiometry and metabolomics in shoots and roots. New Phytologist, 207(3), 591–603.

    CAS  Article  Google Scholar 

  26. Gargallo-Garriga, A., Sardans, J., Pérez-Trujillo, M., Rivas-Ubach, A., Oravec, M., Vecerova, K., et al. (2014). Opposite metabolic responses of shoots and roots to drought. Scientific Reports, 4, 6829.

    CAS  Article  Google Scholar 

  27. Gibney, M. J., Walsh, M., Brennan, L., Roche, H. M., German, B., & van Ommen, B. (2005). Metabolomics in human nutrition: opportunities and challenges. The American Journal of Clinical Nutrition, 82(3), 497–503.

    CAS  Article  Google Scholar 

  28. Glauser, G., Guillarme, D., Grata, E., Boccard, J., Thiocone, A., Carrupt, P.-A., Veuthey, J. L., Rudaz, S., & Wolfender, J. L. (2008). Optimized liquid chromatography–mass spectrometry approach for the isolation of minor stress biomarkers in plant extracts and their identification by capillary nuclear magnetic resonance. Journal of Chromatography A, 1180(1), 90–98.

    CAS  Article  Google Scholar 

  29. Gu, L., Baldocchi, D., Verma, S. B., Black, T. A., Vesala, T., Falge, E. M., & Dowty, P. R. (2002). Advantages of diffuse radiation for terrestrial ecosystem productivity. Journal of Geophysical Research: Atmospheres, 107(D6), 4050.

    Article  Google Scholar 

  30. Gullberg, J., Jonsson, P., Nordström, A., Sjöström, M., & Moritz, T. (2004). Design of experiments: an efficient strategy to identify factors influencing extraction and derivatization of Arabidopsis thaliana samples in metabolomic studies with gas chromatography/mass spectrometry. Analytical Biochemistry, 331(2), 283–295.

    CAS  Article  Google Scholar 

  31. Guy, C., Kaplan, F., Kopka, J., Selbig, J., & Hincha, D. K. (2007). Metabolomics of temperature stress. Physiologia Plantarum, 132(2), 220–235.

    Article  CAS  Google Scholar 

  32. Hall, R. D. (2006). Plant metabolomics: from holistic hope, to hype, to hot topic. New Phytologist, 169(3), 453–468.

    CAS  Article  Google Scholar 

  33. Hiller, K., Hangebrauk, J., Jäger, C., Spura, J., Schreiber, K., & Schomburg, D. (2009). MetaboliteDetector: comprehensive analysis tool for targeted and nontargeted GC/MS based metabolome analysis. Analytical Chemistry, 81(9), 3429–3439.

    CAS  Article  Google Scholar 

  34. Hirai, M. Y., Yano, M., Goodenowe, D. B., Kanaya, S., Kimura, T., Awazuhara, M., Arita, M., Fujiwara, T., & Saito, K. (2004). From the cover: integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 101(27), 10205–10210.

    CAS  Article  Google Scholar 

  35. Husson, F., & Josse, J. (2016). missMDA: A package for handling missing values in multivariate data analysis. Journal of Statistical Software, 70(1), 1–31.

  36. Husson, F., Josse, J., Le, S., & Mazet, J. (2016). FactoMineR: multivariate exploratory data analysis and data mining. R package version, 1. 32, https://CRAN.R-project.org/package=FactoMineR. Accessed 5 Feb 2018.

  37. Ingram, J., & Bartels, D. (1996). The molecular basis of dehydration tolerance in plants. Annual Review of Plant Biology, 47(1), 377–403.

    CAS  Article  Google Scholar 

  38. Jokinen, T., Berndt, T., Makkonen, R., Kerminen, V.-M., Junninen, H., Paasonen, P., Stratmann, F., Herrmann, H., Guenther, A. B., Worsnop, D. R., Kulmala, M., Ehn, M., & Sipilä, M. (2015). Production of extremely low volatile organic compounds from biogenic emissions: measured yields and atmospheric implications. Proceedings of the National Academy of Sciences, 112(23), 7123–7128.

    CAS  Article  Google Scholar 

  39. Kaplan, F., Kopka, J., Haskell, D. W., Zhao, W., Schiller, K. C., Gatzke, N., et al. (2004). Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiology, 136(4), 4159–4168.

    CAS  Article  Google Scholar 

  40. Kellerman, A. M., Dittmar, T., Kothawala, D. N., & Tranvik, L. J. (2014). Chemodiversity of dissolved organic matter in lakes driven by climate and hydrology. Nature Communications, 5, 3804.

    CAS  Article  Google Scholar 

  41. Keltjens, W. G., & van Beusichem, M. L. (1998). Phytochelatins as biomarkers for heavy metal stress in maize (Zea mays L.) and wheat (Triticum aestivum L.): combined effects of copper and cadmium. Plant and Soil, 203(1), 119–126.

    CAS  Article  Google Scholar 

  42. Kim, H. K., Choi, Y. H., & Verpoorte, R. (2010). NMR-based metabolomic analysis of plants. Nature Protocols, 5(3), 536–549.

    CAS  Article  Google Scholar 

  43. Kim, S., Kramer, R. W., & Hatcher, P. G. (2003). Graphical method for analysis of ultrahigh-resolution broadband mass spectra of natural organic matter, the Van Krevelen diagram. Analytical Chemistry, 75(20), 5336–5344.

    CAS  Article  Google Scholar 

  44. Kim, Y.-M., Nowack, S., Olsen, M. T., Becraft, E. D., Wood, J. M., Thiel, V., et al. (2015). Diel metabolomics analysis of a hot spring chlorophototrophic microbial mat leads to new hypotheses of community member metabolisms. Frontiers in Microbiology, 6, 209.

    Google Scholar 

  45. Kind, T., Wohlgemuth, G., Lee, D. Y., Lu, Y., Palazoglu, M., Shahbaz, S., & Fiehn, O. (2009). FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Analytical Chemistry, 81(24), 10038–10048.

    CAS  Article  Google Scholar 

  46. Klein, G. C., Rodgers, R. P., & Marshall, A. G. (2006). Identification of hydrotreatment-resistant heteroatomic species in a crude oil distillation cut by electrospray ionization FT-ICR mass spectrometry. Fuel, 85, 2071–2080.

    CAS  Article  Google Scholar 

  47. Kujawinski, E. (2002). Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS): characterization of complex environmental mixtures. Environmental Forensics, 3(3), 207–216.

    CAS  Article  Google Scholar 

  48. Kujawinski, E. B., & Behn, M. D. (2006). Automated analysis of electrospray ionization Fourier transform ion cyclotron resonance mass spectra of natural organic matter. Analytical Chemistry, 78(13), 4363–4373.

    CAS  Article  Google Scholar 

  49. Lee, D. Y., & Fiehn, O. (2013). Metabolomic response of Chlamydomonas reinhardtii to the inhibition of target of rapamycin (TOR) by rapamycin. Journal of Microbiology and Biotechnology, 23(7), 923–931. L.

  50. Lei, Z., Huhman, D., & Sumner, L. L. (2011). Mass spectrometry strategies in metabolomics. Journal of Biological Chemistry., 286, 25435–25442. https://doi.org/10.1074/jbc.R111.238691.

    CAS  Article  Google Scholar 

  51. Leiss, K. A., Choi, Y. H., Abdel-Farid, I. B., Verpoorte, R., & Klinkhamer, P. G. L. (2009). NMR metabolomics of thrips (Frankliniella occidentalis) resistance in Senecio hybrids. Journal of Chemical Ecology, 35(2), 219–229.

    CAS  Article  Google Scholar 

  52. Leiss, K. A., Cristofori, G., van Steenis, R., Verpoorte, R., & Klinkhamer, P. G. L. (2013). An eco-metabolomic study of host plant resistance to Western flower thrips in cultivated, biofortified and wild carrots. Phytochemistry, 93, 63–70.

    CAS  Article  Google Scholar 

  53. Lin, C. Y., Viant, M. R., & Tjeerdema, R. S. (2006). Metabolomics: methodologies and applications in the environmental sciences. Journal of Pesticide Science, 31(3), 245–251.

    CAS  Article  Google Scholar 

  54. Lindon, J.C., Nicholson, J.K. & Holmes, E. (eds.) The handbook of metabonomics and metabolomics (Elsevier, Amsterdam, 2007), 55–201.

  55. Lindow, S. E., & Brandl, M. T. (2003). Microbiology of the phyllosphere. Applied and Environmental Microbiology, 69(4), 1875–1883.

    CAS  Article  Google Scholar 

  56. Liu, Y., & Kujawinski, E. B. (2015). Chemical composition and potential environmental impacts of water-soluble polar crude oil components inferred from ESI FT-ICR MS. PLoS One, 10(9), e0136376.

    Article  CAS  Google Scholar 

  57. Macedo, A. F. (2012). Abiotic stress responses in plants: metabolism to productivity. In Abiotic stress responses in plants (pp. 41–61). New York, NY: Springer New York.

    Google Scholar 

  58. Mahowald, N. M., Artaxo, P., Baker, A. R., Jickells, T. D., Okin, G. S., Randerson, J. T., & Townsend, A. R. (2005). Impacts of biomass burning emissions and land use change on Amazonian atmospheric phosphorus cycling and deposition. Global Biogeochemical Cycles, 19, GC4030.

    Google Scholar 

  59. Mari, A., Lyon, D., Fragner, L., Montoro, P., Piacente, S., Wienkoop, S., Egelhofer, V., & Weckwerth, W. (2013). Phytochemical composition of Potentilla anserina L. analyzed by an integrative GC-MS and LC-MS metabolomics platform. Metabolomics : Official journal of the Metabolomic Society, 9(3), 599–607.

    CAS  Article  Google Scholar 

  60. Medeiros, P. M., Babcock-Adamos, L., Seidel, M., Castelao, R. M., Di Iorio, D., Hollibaugh, J. T., & Dittmar, T. (2017). Export of terrigenous dissolved organic matter in a broad continental shelf. Limnology and Oceanography, 62, 1718–1731.

    CAS  Article  Google Scholar 

  61. Menzel, A., Sparks, T. H., Estrella, N., Koch, E., Aasa, A., Ahas, R., et al. (2006). European phenological response to climate change matches the warming pattern. Global Change Biology, 12(10), 1969–1976.

    Article  Google Scholar 

  62. Minor, E. C., Swenson, M. M., Mattson, B. M., & Oyler, A. R. (2014). Structural characterization of dissolved organic matter: a review of current techniques for isolation and analysis. Environ. Sci Processes Impacts, 16(9), 2064–2079.

    Article  Google Scholar 

  63. Nikiforova, V. J., Kopka, J., Tolstikov, V., Fiehn, O., Hopkins, L., Hawkesford, M. J., et al. (2005). Systems rebalancing of metabolism in response to sulfur deprivation, as revealed by metabolome analysis of Arabidopsis plants. Plant Physiology, 138(1), 304–318.

    CAS  Article  Google Scholar 

  64. Obee, T. N., & Hay, S. O. (1997). Effects of moisture and temperature on the photooxidation of ethylene on Titania. Environmental Science & Technology, 31(7), 2034–2038.

    CAS  Article  Google Scholar 

  65. Oksanen, J., Guillaume-Blanchet, F., Kindt, R., Legendre, P., Minchin, P., O’Hara, R., et al. (2013). vegan: community ecology package. R package version 2.0–9, http ://CRAN.R-project.org/package=vegan

  66. Osterholz, H., Singer, G., Wemheuer, B., Daniel, R., Simon, M., Niggemann, J., & Dittmar, T. (2016). Deciphering associations between dissolved organic molecules and bacterial communities in a pelagic marine system. The ISME Journal, 10(7), 1717–1730.

    CAS  Article  Google Scholar 

  67. Paerl, H. W. (1997). Coastal eutrophication and harmful algal blooms: importance of atmospheric deposition and groundwater as “new” nitrogen and other nutrient sources. Limnology and Oceanography, 42(5part2), 1154–1165.

    CAS  Article  Google Scholar 

  68. Pan, Z., & Raftery, D. (2007). Comparing and combining NMR spectroscopy and mass spectrometry in metabolomics. Analytical and Bioanalytical Chemistry, 387(2), 525–527.

    CAS  Article  Google Scholar 

  69. Pandis, S. N., Harley, R. A., Cass, G. R., & Seinfeld, J. H. (1992). Secondary organic aerosol formation and transport. Atmospheric Environment Part A. General Topics, 26(13), 2269–2282.

    Article  Google Scholar 

  70. Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37(1), 637–669.

    Article  Google Scholar 

  71. Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421(6918), 37–42.

    CAS  Article  Google Scholar 

  72. Paytan, A., Mackey, K. R. M., Chen, Y., Lima, I. D., Doney, S. C., Mahowald, N., Labiosa, R., & Post, A. F. (2009). Toxicity of atmospheric aerosols on marine phytoplankton. Proceedings of the National Academy of Sciences of the United States of America, 106(12), 4601–4605.

    CAS  Article  Google Scholar 

  73. Peñuelas, J., & Sardans, J. (2009). Ecological metabolomics. Chemistry and Ecology, 25(4), 305–309.

    Article  CAS  Google Scholar 

  74. Peñuelas, J., Sardans, J., Rivas-Ubach, A., & Janssens, I. A. (2012). The human-induced imbalance between C, N and P in Earth’s life system. Global Change Biology, 18(1), 3–6.

  75. Peñuelas, J., & Staudt, M. (2010). BVOCs and global change. Trends in Plant Science, 15(3), 133–144.

    Article  CAS  Google Scholar 

  76. Peñuelas, J., & Terradas, J. (2014). The foliar microbiome. Trends in Plant Science, 19(5), 278–280.

    Article  CAS  Google Scholar 

  77. Pluskal, T., Castillo, S., Villar-Briones, A., & Orešič, M. (2010). MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics, 11(1), 395.

    Article  CAS  Google Scholar 

  78. R Core Team. (2013). R: a language and environment for statistical computing. Vienna.

  79. Ramanathan, V., Crutzen, P. J., Kiehl, J. T., & Rosenfeld, D. (2001). Aerosols, climate, and the hydrological cycle. Science, 294(5549), 2119–2124.

    CAS  Article  Google Scholar 

  80. Reemtsma, T. (2009). Determination of molecular formulas of natural organic matter molecules by (ultra-) high-resolution mass spectrometry: status and needs. Journal of Chromatography A, 1216(18), 3687–3701.

    CAS  Article  Google Scholar 

  81. Riedel, T., & Dittmar, T. (2014). A method detection limit for the analysis of natural organic matter via Fourier transform ion cyclotron resonance mass spectrometry. Analytical Chemistry, 86(16), 8376–8382.

    CAS  Article  Google Scholar 

  82. Rivas-Ubach, A., Barbeta, A., Sardans, J., Guenther, A., Ogaya, R., Oravec, M., Urban, O., & Peñuelas, J. (2016b). Topsoil depth substantially influences the responses to drought of the foliar metabolomes of Mediterranean forests. Perspectives in Plant Ecology, Evolution and Systematics, 21, 41–54.

    Article  Google Scholar 

  83. Rivas-Ubach, A., Gargallo-Garriga, A., Sardans, J., Oravec, M., Mateu-Castell, L., Pérez-Trujillo, M., Parella, T., Ogaya, R., Urban, O., & Peñuelas, J. (2014). Drought enhances folivory by shifting foliar metabolomes in Quercus ilex trees. New Phytologist, 202(3), 874–885.

    CAS  Article  Google Scholar 

  84. Rivas-Ubach, A., Hódar, J. A., Sardans, J., Kyle, J. E., Kim, Y.-M., Oravec, M., Urban, O., Guenther, A., & Peñuelas, J. (2016a). Are the metabolomic responses to folivory of closely related plant species linked to macroevolutionary and plant–folivore coevolutionary processes? Ecology and Evolution, 6(13), 4372–4386.

    Article  Google Scholar 

  85. Rivas-Ubach, A., Liu, Y., Bianchi, T. S., Tolić, N., Jansson, C., & Paša-Tolić, L. (2018a). Moving beyond the van Krevelen diagram: a new stoichiometric approach for compound classification in organisms. Analytical Chemistry, acs.Analchem.8b00529. doi:https://doi.org/10.1021/acs.analchem.8b00529.

  86. Rivas-Ubach, A., Pérez-Trujillo, M., Sardans, J., Gargallo-Garriga, A., Parella, T., & Peñuelas, J. (2013). Ecometabolomics: optimized NMR-based method. Methods in Ecology and Evolution, 4(5), 464–473.

    Article  Google Scholar 

  87. Rivas-Ubach, A., Poret-Peterson, A. T., Peñuelas, J., Sardans, J., Pérez-Trujillo, M., Legido-Quigley, C., et al. (2018b). Coping with iron limitation: a metabolomic study of Synechocystis sp. PCC 6803. Acta Physiologiae Plantarum, 40(2), 28.

    Article  CAS  Google Scholar 

  88. Rivas-Ubach, A., Sardans, J., Hódar, J. A., Garcia-Porta, J., Guenther, A., Oravec, M., Urban, O., & Peñuelas, J. (2016c). Similar local, but different systemic, metabolomic responses of closely related pine subspecies to folivory by caterpillars of the processionary moth. Plant Biology, 18(3), 484–494.

    CAS  Article  Google Scholar 

  89. Rivas-Ubach, A., Sardans, J., Hódar, J. A., Garcia-Porta, J., Guenther, A., Paša-Tolić, L., Oravec, M., Urban, O., & Peñuelas, J. (2017). Close and distant: contrasting the metabolism of two closely related subspecies of Scots pine under the effects of folivory and summer drought. Ecology and Evolution, 7(21), 8976–8988.

    Article  Google Scholar 

  90. Rivas-Ubach, A., Sardans, J., Peŕez-Trujillo, M., Estiarte, M., & Penũelas, J. (2012). Strong relationship between elemental stoichiometry and metabolome in plants. Proceedings of the National Academy of Sciences of the United States of America, 109(11), 4181–4186.

    CAS  Article  Google Scholar 

  91. Rochford, S. (2005). Metabolomics reviewed: a new “omics” platform technology for systems biology and implications for natural products research. Journal of Natural Products, 68, 1813–1820.

    Article  CAS  Google Scholar 

  92. Roullier-Gall, C., Boutegrabet, L., Gougeon, R. D., & Schmitt-Kopplin, P. (2014). A grape and wine chemodiversity comparison of different appellations in Burgundy: vintage vs terroir effects. Food Chemistry, 152, 100–107.

    CAS  Article  Google Scholar 

  93. Roulston, T. H., & Cane, J. H. (2000). Pollen nutritional content and digestibility for animals. Plant Systematics and Evolution, 222(1–4), 187–209.

    CAS  Article  Google Scholar 

  94. Saito, K., & Matsuda, F. (2010). Metabolomics for functional genomics, systems biology, and biotechnology. Annual Review of Plant Biology, 361, 463–489.

    Article  CAS  Google Scholar 

  95. Sardans, J., Gargallo-Garriga, A., Pérez-Trujillo, M., Parella, T. J., Seco, R., Filella, I., & Peñuelas, J. (2014). Metabolic responses of Quercus ilex seedlings to wounding analysed with nuclear magnetic resonance profiling. Plant Biology, 16(2), 395–403.

    CAS  Article  Google Scholar 

  96. Sardans, J., Peñuelas, J., & Rivas-Ubach, A. (2011). Ecological metabolomics: overview of current developments and future challenges. Chemoecology, 21(4), 191–225.

    CAS  Article  Google Scholar 

  97. Sardans, J., Rivas-Ubach, A., & Peñuelas, J. (2012). The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function: a review and perspectives. Biogeochemistry, 111(1–3), 1–39.

    Article  Google Scholar 

  98. Schmitt-Kopplin, P., Liger-Belair, G., Koch, B. P., Flerus, R., Kattner, G., Harir, M., Kanawati, B., Lucio, M., Tziotis, D., Hertkorn, N., & Gebefügi, I. (2012). Dissolved organic matter in sea spray: a transfer study from marine surface water to aerosols. Biogeosciences, 9(4), 1571–1582.

    CAS  Article  Google Scholar 

  99. Shulaev, V. (2006). Metabolomics technology and bioinformatics. Briefings in Bioinformatics, 7(2), 128–139.

    CAS  Article  Google Scholar 

  100. Seco, R., Peñuelas, J., & Filella, I. (2007). Short-chain oxygenated VOCs: emission and uptake by plants and atmospheric sources, sinks, and concentrations. Atmospheric Environment, 41(12), 2477–2499.

    CAS  Article  Google Scholar 

  101. Shulaev, V., Cortes, D., Miller, G., & Mittler, R. (2008). Metabolomics for plant stress response. Physiologia Plantarum, 132(2), 199–208.

    CAS  Article  Google Scholar 

  102. Sleighter, R. L., & Hatcher, P. G. (2007). The application of electrospray ionization coupled to ultrahigh resolution mass spectrometry for the molecular characterization of natural organic matter. Journal of mass spectrometry : JMS, 42(5), 559–574.

    CAS  Article  Google Scholar 

  103. Smith, D. F., Podgorski, D. C., Rodgers, R. P., Blakney, G. T., & Hendrickson, C. L. (2018). 21 tesla FT-ICR mass spectrometer for ultrahigh-resolution analysis of complex organic mixtures. Analytical Chemistry, 90, 2041–2047. https://doi.org/10.1021/acs.analchem.7b04159.

    CAS  Article  Google Scholar 

  104. Smith, D., & Španěl, P. (2011). Direct, rapid quantitative analyses of BVOCs using SIFT-MS and PTR-MS obviating sample collection. TrAC Trends in Analytical Chemistry, 30(7), 945–959.

    CAS  Article  Google Scholar 

  105. Solberg, Y., & Remedios, G. (1980). Chemical composition of pure and bee-collected pollen. Meldinger fra Norges landbrukshogskole, 59, 1–13.

    Google Scholar 

  106. Spencer, R. G. M., Mann, P. J., Dittmar, T., Eglinton, T. I., McIntyre, C., Holmes, R. M., Zimov, N., & Stubbins, A. (2015). Detecting the signature of permafrost thaw in Arctic rivers. Geophysical Research Letters, 42(8), 2830–2835.

    Article  Google Scholar 

  107. Sterner, R., & Elser, J. (2002). Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princetion University Press.

  108. Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., Fan, T. W. M., Fiehn, O., Goodacre, R., Griffin, J. L., Hankemeier, T., Hardy, N., Harnly, J., Higashi, R., Kopka, J., Lane, A. N., Lindon, J. C., Marriott, P., Nicholls, A. W., Reily, M. D., Thaden, J. J., & Viant, M. R. (2007). Proposed minimum reporting standards for chemical analysis. Metabolomics, 3(3), 211–221.

    CAS  Article  Google Scholar 

  109. t’Kindt, R., De Veylder, L., Storme, M., Deforce, D., & Van Bocxlaer, J. (2008). LC-MS metabolic profiling of Arabidopsis thaliana plant leaves and cell cultures: optimization of pre-LC-MS procedure parameters. Journal of chromatography B, Analytical technologies in the biomedical and life sciences, 871(1), 37–43.

    Article  CAS  Google Scholar 

  110. Tfaily, M. M., Chu, R. K., Tolić, N., Roscioli, K. M., Anderton, C. R., Paša-Tolić, L., Robinson, E. W., & Hess, N. J. (2015). Advanced solvent based methods for molecular characterization of soil organic matter by high-resolution mass spectrometry. Analytical Chemistry, 87(10), 5206–5215.

    CAS  Article  Google Scholar 

  111. Tholl, D., Boland, W., Hansel, A., Loreto, F., Röse, U. S. R., & Schnitzler, J.-P. (2006). Practical approaches to plant volatile analysis. The Plant Journal, 45(4), 540–560.

    CAS  Article  Google Scholar 

  112. Thompson, H., Heimendinger, J., Gillette, C., Sedlacek, S., Haegele, A., O’Neill, C., & Wolfe, P. (2005). In vivo investigation of changes in biomarkers of oxidative stress induced by plant food rich diets. Journal of Agricultural and Food Chemistry, 53(15), 6126–6132.

    CAS  Article  Google Scholar 

  113. Tolić, N., Liu, Y., Liyu, A., Shen, Y., Tfaily, M. M., Kujawinski, E. B., Longnecker, K., Kuo, L. J., Robinson, E. W., Paša-Tolić, L., & Hess, N. J. (2017). Formularity: software for automated formula assignment of natural and other organic matter from ultrahigh-resolution mass spectra. Analytical Chemistry, 89, 12659–12665. https://doi.org/10.1021/acs.analchem.7b03318.

    CAS  Article  Google Scholar 

  114. Uzu, G., Sobanska, S., Sarret, G., Muñoz, M., & Dumat, C. (2010). Foliar lead uptake by lettuce exposed to atmospheric fallouts. Environmental Science & Technology, 44(3), 1036–1042.

    CAS  Article  Google Scholar 

  115. van den Berg, R. A., Hoefsloot, H. C., Westerhuis, J. A., Smilde, A. K., & van der Werf, M. J. (2006). Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics, 7(1), 142.

    Article  CAS  Google Scholar 

  116. van Krevelen, D. (1950). Graphical-statistical method for the study of structure and reaction processes of coal. Fuel, 29, 269–284.

    Google Scholar 

  117. Vorholt, J. A. (2012). Microbial life in the phyllosphere. Nature Reviews Microbiology, 10(12), 828–840.

    CAS  Article  Google Scholar 

  118. Walsh, M. C., Brennan, L., Malthouse, J. P. G., Roche, H. M., & Gibney, M. J. (2006). Effect of acute dietary standardization on the urinary, plasma, and salivary metabolomic profiles of healthy humans. The American Journal of Clinical Nutrition, 84(3), 531–539.

    CAS  Article  Google Scholar 

  119. Walther, G. R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J. C., Fromentin, J. M., Hoegh-Guldberg, O., & Bairlein, F. (2002). Ecological responses to recent climate change. Nature, 416(6879), 389–395.

    CAS  Article  Google Scholar 

  120. Wang, R., Balkanski, Y., Bopp, L., Aumont, O., Boucher, O., Ciais, P., Gehlen, M., Peñuelas, J., Ethé, C., Hauglustaine, D., Li, B., Liu, J., Zhou, F., & Tao, S. (2015). Influence of anthropogenic aerosol deposition on the relationship between oceanic productivity and warming. Geophysical Research Letters, 42(24), 10745–10754.

    CAS  Article  Google Scholar 

  121. Warnes, G. R., Bolker, B., Bonebakker, L., Gentleman, R., Huber Andy Liaw, W., Lumley, T., et al. (2016). gplots: various R programing tools for plotting data. R package version 3.0.1, http://CRAN.R-project.org/package=gplots

  122. Wedding, J. B., Carlson, R. W., Stukel, J. J., & Bazzaz, F. A. (1975). Aerosol deposition on plant leaves. Environmental Science & Technology, 9(2), 151–153.

    CAS  Article  Google Scholar 

  123. Whipps, J. M., Hand, P., Pink, D., & Bending, G. D. (2008). Phyllosphere microbiology with special reference to diversity and plant genotype. Journal of Applied Microbiology, 105(6), 1744–1755.

    CAS  Article  Google Scholar 

  124. White, R. A., Rivas-Ubach, A., Borkum, M. I., Köberl, M., Bilbao, A., Colby, S. M., et al. (2017). The state of rhizospheric science in the era of multi-omics: a practical guide to omics technologies. Rhizosphere, 3, 212–221. https://doi.org/10.1016/J.RHISPH.2017.05.003.

    Article  Google Scholar 

  125. Wishart, D. S. (2008). Metabolomics: applications to food science and nutrition research. Trends in Food Science & Technology, 19(9), 482–493.

    CAS  Article  Google Scholar 

  126. Wozniak, A. S., Bauer, J. E., Sleighter, R. L., Dickhut, R. M., & Hatcher, P. G. (2008). Technical note: molecular characterization of aerosol-derived water soluble organic carbon using ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Atmospheric Chemistry and Physics, 8(17), 5099–5111.

    CAS  Article  Google Scholar 

  127. Xiong, T.-T., Leveque, T., Austruy, A., Goix, S., Schreck, E., Dappe, V., Sobanska, S., Foucault, Y., & Dumat, C. (2014). Foliar uptake and metal(loid) bioaccessibility in vegetables exposed to particulate matter. Environmental Geochemistry and Health, 36(5), 897–909.

    CAS  Article  Google Scholar 

  128. Zhang, A., Sun, H., Wang, P., Han, Y., & Wang, X. (2012). Modern analytical techniques in metabolomics analysis. The Analyst, 137(2), 293–300.

    CAS  Article  Google Scholar 

  129. Zhang, Q., Stanier, C. O., Canagaratna, M. R., Jayne, J. T., Worsnop, D. R., Pandis, S. N., & Jimenez, J. L. (2004). Insights into the chemistry of new particle formation and growth events in Pittsburgh based on aerosol mass spectrometry. Environmental Science & Technology, 38(18), 4797–4809.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank Rosalie Chu and Therese Clauss for their laboratory support. This research was performed using EMSL, a DOE Office of Science User Facility sponsored by the Office of Biological and Environmental Research at Pacific Northwest National Laboratory. JS and JP were supported by the European Research Council Synergy grant SyG-2013-610028 IMBALANCE-P, the Spanish Government projects CGL2013-48074-P, and the Catalan Government project SGR 2014-274. ALS was supported in part by National Science Foundation grant AGS 0952659.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Albert Rivas-Ubach.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 356 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rivas-Ubach, A., Liu, Y., Steiner, A.L. et al. Atmo-ecometabolomics: a novel atmospheric particle chemical characterization methodology for ecological research. Environ Monit Assess 191, 78 (2019). https://doi.org/10.1007/s10661-019-7205-x

Download citation

Keywords

  • Aerosol particles
  • Metabolomics
  • Ecosystems
  • Biomarkers
  • Mass spectrometry
  • FT-ICR