Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Atmo-ecometabolomics: a novel atmospheric particle chemical characterization methodology for ecological research

Abstract

Aerosol particles play important roles in processes controlling the composition of the atmosphere and function of ecosystems. A better understanding of the composition of aerosol particles is beginning to be recognized as critical for ecological research to further comprehend the link between aerosols and ecosystems. While chemical characterization of aerosols has been practiced in the atmospheric science community, detailed methodology tailored to the needs of ecological research does not exist yet. In this study, we describe an efficient methodology (atmo-ecometabolomics), in step-by-step details, from the sampling to the data analyses, to characterize the chemical composition of aerosol particles, namely atmo-metabolome. This method employs mass spectrometry platforms such as liquid and gas chromatography mass spectrometries (MS) and Fourier transform ion cyclotron resonance MS (FT-ICR-MS). For methodology evaluation, we analyzed aerosol particles collected during two different seasons (spring and summer) in a low-biological-activity ecosystem. Additionally, to further validate our methodology, we analyzed aerosol particles collected in a more biologically active ecosystem during the pollination peaks of three different representative tree species. Our statistical results showed that our sampling and extraction methods are suitable for characterizing the atmo-ecometabolomes in these two distinct ecosystems with any of the analytical platforms. Datasets obtained from each mass spectrometry instrument showed overall significant differences of the atmo-ecometabolomes between spring and summer as well as between the three pollination peak periods. Furthermore, we have identified several metabolites that can be attributed to pollen and other plant-related aerosol particles. We additionally provide a basic guide of the potential use ecometabolomic techniques on different mass spectrometry platforms to accurately analyze the atmo-ecometabolomes for ecological studies. Our method represents an advanced novel approach for future studies in the impact of aerosol particle chemical compositions on ecosystem structure and function and biogeochemistry.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Achotegui-Castells, A., Sardans, J., Ribas, À., & Peñuelas, J. (2013). Identifying the origin of atmospheric inputs of trace elements in the Prades Mountains (Catalonia) with bryophytes, lichens, and soil monitoring. Environmental Monitoring and Assessment, 185(1), 615–629.

  2. Andreae, M. O., & Crutzen, P. J. (1997). Atmospheric aerosols: biogeochemical sources and role in atmospheric chemistry. Science, 276(5315), 1052–1058.

  3. Arnold, A. E., Maynard, Z., Gilbert, G. S., Coley, P. D., & Kursar, T. A. (2000). Are tropical fungal endophytes hyperdiverse? Ecology Letters, 3(4), 267–274.

  4. Ayers, G. P., & Gras, J. L. (1991). Seasonal relationship between cloud condensation nuclei and aerosol methanesulphonate in marine air. Nature, 353(6347), 834–835.

  5. Azad K. R., & Shulaev, V. (2018). Metabolomics technology and bioinformatics for precision medicine. Briefings in bioinformatics, bxx170, https://doi.org/10.1093/bib/bbx170.

  6. Baker, A. R., Kelly, S. D., Biswas, K. F., Witt, M., & Jickells, T. D. (2003). Atmospheric deposition of nutrients to the Atlantic Ocean. Geophysical Research Letters, 30(24).

  7. Baustian, K. J., Cziczo, D. J., Wise, M. E., Pratt, K. A., Kulkarni, G., Hallar, A. G., & Tolbert, M. A. (2012). Importance of aerosol composition, mixing state, and morphology for heterogeneous ice nucleation: a combined field and laboratory approach. Journal of Geophysical Research: Atmospheres, 117, D06217.

  8. Böttcher, C., Roepenack-Lahaye, E. v., Willscher, E., Scheel, D., & Clemens, S. (2007). Evaluation of matrix effects in metabolite profiling based on capillary liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry. Analytical Chemistry, 79(4), 1507–1513.

  9. Bundy, J. G., Davey, M. P., & Viant, M. R. (2008). Environmental metabolomics: a critical review and future perspectives. Metabolomics, 5(1), 3–21.

  10. Canagaratna, M. R., Jayne, J. T., Jimenez, J. L., Allan, J. D., Alfarra, M. R., Zhang, Q., Onasch, T. B., Drewnick, F., Coe, H., Middlebrook, A., Delia, A., Williams, L. R., Trimborn, A. M., Northway, M. J., DeCarlo, P. F., Kolb, C. E., Davidovits, P., & Worsnop, D. R. (2007). Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer. Mass Spectrometry Reviews, 26(2), 185–222.

  11. Carlton, A. G., Pinder, R. W., Bhave, P. V., & Pouliot, G. A. (2010). To what extent can biogenic SOA be controlled? Environmental Science & Technology, 44(9), 3376–3380.

  12. Carnicer, J., Sardans, J., Stefanescu, C., Ubach, A., Bartrons, M., Asensio, D., & Peñuelas, J. (2015). Global biodiversity, stoichiometry and ecosystem function responses to human-induced C–N–P imbalances. Journal of Plant Physiology, 172, 82–91.

  13. Claudino, W. M., Quattrone, A., Biganzoli, L., Pestrin, M., Bertini, I., & Di Leo, A. (2007). Metabolomics: available results, current research projects in breast cancer, and future applications. Journal of Clinical Oncology, 25(19), 2840–2846.

  14. de Mendiburu, F. (2015). Agricolae: statistical procedures for agricultural research. R package version, 1, 2–3 http://CRAN.R-project.org/package=agricolae.

  15. De Vos, R. C., Moco, S., Lommen, A., Keurentjes, J. J., Bino, R. J., & Hall, R. D. (2007). Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nature Protocols, 2(4), 778–791.

  16. Després, V. R., Alex Huffman, J., Burrows, S. M., Hoose, C., Safatov, A. S., Buryak, G., et al. (2012). Primary biological aerosol particles in the atmosphere: a review. Tellus B, 64(15598), 1–58.

  17. Ding, J., Sorensen, C. M., Zhang, Q., Jiang, H., Jaitly, N., Livesay, E. A., Shen, Y., Smith, R. D., & Metz, T. O. (2007). Capillary LC coupled with high-mass measurement accuracy mass spectrometry for metabolic profiling. Analytical Chemistry, 79(16), 6081–6093.

  18. Elser, J. J., Dobberfuhl, D. R., MacKay, N. A., & Schampel, J. H. (1996). Organism size, life history, and N:P stoichiometry. BioScience, 46(9), 674–684.

  19. Fageria, N. K., Filho, M. P. B., Moreira, A., & Guimarães, C. M. (2009). Foliar fertilization of crop plants. Journal of Plant Nutrition, 32(6), 1044–1064.

  20. Feng, J., Wang, Y., Zhao, J., Zhu, L., Bian, X., & Zhang, W. (2011). Source attributions of heavy metals in rice plant along highway in eastern China. Journal of Environmental Sciences, 23(7), 1158–1164.

  21. Fernández, V., & Brown, P. H. (2013). From plant surface to plant metabolism: the uncertain fate of foliar-applied nutrients. Frontiers in Plant Science, 4, 289.

  22. Fiehn, O. (2002). Metabolomics - the link between genotypes and phenotypes. Plant Molecular Biology, 48(1–2), 155–171.

  23. Fukusaki, E., & Kobayashi, A. (2005). Plant metabolomics: potential for practical operation. Journal of Bioscience and Bioengineering, 100(4), 347–354.

  24. Fuzzi, S., Andreae, M. O., Huebert, B. J., Kulmala, M., Bond, T. C., Boy, M., Doherty, S. J., Guenther, A., Kanakidou, M., Kawamura, K., Kerminen, V. M., Lohmann, U., Russell, L. M., & Pöschl, U. (2006). Critical assessment of the current state of scientific knowledge, terminology, and research needs concerning the role of organic aerosols in the atmosphere, climate, and global change. Atmospheric Chemistry and Physics, 6(7), 2017–2038.

  25. Gargallo-Garriga, A., Sardans, J., Pérez-Trujillo, M., Oravec, M., Urban, O., Jentsch, A., Kreyling, J., Beierkuhnlein, C., Parella, T., & Peñuelas, J. (2015). Warming differentially influences the effects of drought on stoichiometry and metabolomics in shoots and roots. New Phytologist, 207(3), 591–603.

  26. Gargallo-Garriga, A., Sardans, J., Pérez-Trujillo, M., Rivas-Ubach, A., Oravec, M., Vecerova, K., et al. (2014). Opposite metabolic responses of shoots and roots to drought. Scientific Reports, 4, 6829.

  27. Gibney, M. J., Walsh, M., Brennan, L., Roche, H. M., German, B., & van Ommen, B. (2005). Metabolomics in human nutrition: opportunities and challenges. The American Journal of Clinical Nutrition, 82(3), 497–503.

  28. Glauser, G., Guillarme, D., Grata, E., Boccard, J., Thiocone, A., Carrupt, P.-A., Veuthey, J. L., Rudaz, S., & Wolfender, J. L. (2008). Optimized liquid chromatography–mass spectrometry approach for the isolation of minor stress biomarkers in plant extracts and their identification by capillary nuclear magnetic resonance. Journal of Chromatography A, 1180(1), 90–98.

  29. Gu, L., Baldocchi, D., Verma, S. B., Black, T. A., Vesala, T., Falge, E. M., & Dowty, P. R. (2002). Advantages of diffuse radiation for terrestrial ecosystem productivity. Journal of Geophysical Research: Atmospheres, 107(D6), 4050.

  30. Gullberg, J., Jonsson, P., Nordström, A., Sjöström, M., & Moritz, T. (2004). Design of experiments: an efficient strategy to identify factors influencing extraction and derivatization of Arabidopsis thaliana samples in metabolomic studies with gas chromatography/mass spectrometry. Analytical Biochemistry, 331(2), 283–295.

  31. Guy, C., Kaplan, F., Kopka, J., Selbig, J., & Hincha, D. K. (2007). Metabolomics of temperature stress. Physiologia Plantarum, 132(2), 220–235.

  32. Hall, R. D. (2006). Plant metabolomics: from holistic hope, to hype, to hot topic. New Phytologist, 169(3), 453–468.

  33. Hiller, K., Hangebrauk, J., Jäger, C., Spura, J., Schreiber, K., & Schomburg, D. (2009). MetaboliteDetector: comprehensive analysis tool for targeted and nontargeted GC/MS based metabolome analysis. Analytical Chemistry, 81(9), 3429–3439.

  34. Hirai, M. Y., Yano, M., Goodenowe, D. B., Kanaya, S., Kimura, T., Awazuhara, M., Arita, M., Fujiwara, T., & Saito, K. (2004). From the cover: integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 101(27), 10205–10210.

  35. Husson, F., & Josse, J. (2016). missMDA: A package for handling missing values in multivariate data analysis. Journal of Statistical Software, 70(1), 1–31.

  36. Husson, F., Josse, J., Le, S., & Mazet, J. (2016). FactoMineR: multivariate exploratory data analysis and data mining. R package version, 1. 32, https://CRAN.R-project.org/package=FactoMineR. Accessed 5 Feb 2018.

  37. Ingram, J., & Bartels, D. (1996). The molecular basis of dehydration tolerance in plants. Annual Review of Plant Biology, 47(1), 377–403.

  38. Jokinen, T., Berndt, T., Makkonen, R., Kerminen, V.-M., Junninen, H., Paasonen, P., Stratmann, F., Herrmann, H., Guenther, A. B., Worsnop, D. R., Kulmala, M., Ehn, M., & Sipilä, M. (2015). Production of extremely low volatile organic compounds from biogenic emissions: measured yields and atmospheric implications. Proceedings of the National Academy of Sciences, 112(23), 7123–7128.

  39. Kaplan, F., Kopka, J., Haskell, D. W., Zhao, W., Schiller, K. C., Gatzke, N., et al. (2004). Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiology, 136(4), 4159–4168.

  40. Kellerman, A. M., Dittmar, T., Kothawala, D. N., & Tranvik, L. J. (2014). Chemodiversity of dissolved organic matter in lakes driven by climate and hydrology. Nature Communications, 5, 3804.

  41. Keltjens, W. G., & van Beusichem, M. L. (1998). Phytochelatins as biomarkers for heavy metal stress in maize (Zea mays L.) and wheat (Triticum aestivum L.): combined effects of copper and cadmium. Plant and Soil, 203(1), 119–126.

  42. Kim, H. K., Choi, Y. H., & Verpoorte, R. (2010). NMR-based metabolomic analysis of plants. Nature Protocols, 5(3), 536–549.

  43. Kim, S., Kramer, R. W., & Hatcher, P. G. (2003). Graphical method for analysis of ultrahigh-resolution broadband mass spectra of natural organic matter, the Van Krevelen diagram. Analytical Chemistry, 75(20), 5336–5344.

  44. Kim, Y.-M., Nowack, S., Olsen, M. T., Becraft, E. D., Wood, J. M., Thiel, V., et al. (2015). Diel metabolomics analysis of a hot spring chlorophototrophic microbial mat leads to new hypotheses of community member metabolisms. Frontiers in Microbiology, 6, 209.

  45. Kind, T., Wohlgemuth, G., Lee, D. Y., Lu, Y., Palazoglu, M., Shahbaz, S., & Fiehn, O. (2009). FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Analytical Chemistry, 81(24), 10038–10048.

  46. Klein, G. C., Rodgers, R. P., & Marshall, A. G. (2006). Identification of hydrotreatment-resistant heteroatomic species in a crude oil distillation cut by electrospray ionization FT-ICR mass spectrometry. Fuel, 85, 2071–2080.

  47. Kujawinski, E. (2002). Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS): characterization of complex environmental mixtures. Environmental Forensics, 3(3), 207–216.

  48. Kujawinski, E. B., & Behn, M. D. (2006). Automated analysis of electrospray ionization Fourier transform ion cyclotron resonance mass spectra of natural organic matter. Analytical Chemistry, 78(13), 4363–4373.

  49. Lee, D. Y., & Fiehn, O. (2013). Metabolomic response of Chlamydomonas reinhardtii to the inhibition of target of rapamycin (TOR) by rapamycin. Journal of Microbiology and Biotechnology, 23(7), 923–931. L.

  50. Lei, Z., Huhman, D., & Sumner, L. L. (2011). Mass spectrometry strategies in metabolomics. Journal of Biological Chemistry., 286, 25435–25442. https://doi.org/10.1074/jbc.R111.238691.

  51. Leiss, K. A., Choi, Y. H., Abdel-Farid, I. B., Verpoorte, R., & Klinkhamer, P. G. L. (2009). NMR metabolomics of thrips (Frankliniella occidentalis) resistance in Senecio hybrids. Journal of Chemical Ecology, 35(2), 219–229.

  52. Leiss, K. A., Cristofori, G., van Steenis, R., Verpoorte, R., & Klinkhamer, P. G. L. (2013). An eco-metabolomic study of host plant resistance to Western flower thrips in cultivated, biofortified and wild carrots. Phytochemistry, 93, 63–70.

  53. Lin, C. Y., Viant, M. R., & Tjeerdema, R. S. (2006). Metabolomics: methodologies and applications in the environmental sciences. Journal of Pesticide Science, 31(3), 245–251.

  54. Lindon, J.C., Nicholson, J.K. & Holmes, E. (eds.) The handbook of metabonomics and metabolomics (Elsevier, Amsterdam, 2007), 55–201.

  55. Lindow, S. E., & Brandl, M. T. (2003). Microbiology of the phyllosphere. Applied and Environmental Microbiology, 69(4), 1875–1883.

  56. Liu, Y., & Kujawinski, E. B. (2015). Chemical composition and potential environmental impacts of water-soluble polar crude oil components inferred from ESI FT-ICR MS. PLoS One, 10(9), e0136376.

  57. Macedo, A. F. (2012). Abiotic stress responses in plants: metabolism to productivity. In Abiotic stress responses in plants (pp. 41–61). New York, NY: Springer New York.

  58. Mahowald, N. M., Artaxo, P., Baker, A. R., Jickells, T. D., Okin, G. S., Randerson, J. T., & Townsend, A. R. (2005). Impacts of biomass burning emissions and land use change on Amazonian atmospheric phosphorus cycling and deposition. Global Biogeochemical Cycles, 19, GC4030.

  59. Mari, A., Lyon, D., Fragner, L., Montoro, P., Piacente, S., Wienkoop, S., Egelhofer, V., & Weckwerth, W. (2013). Phytochemical composition of Potentilla anserina L. analyzed by an integrative GC-MS and LC-MS metabolomics platform. Metabolomics : Official journal of the Metabolomic Society, 9(3), 599–607.

  60. Medeiros, P. M., Babcock-Adamos, L., Seidel, M., Castelao, R. M., Di Iorio, D., Hollibaugh, J. T., & Dittmar, T. (2017). Export of terrigenous dissolved organic matter in a broad continental shelf. Limnology and Oceanography, 62, 1718–1731.

  61. Menzel, A., Sparks, T. H., Estrella, N., Koch, E., Aasa, A., Ahas, R., et al. (2006). European phenological response to climate change matches the warming pattern. Global Change Biology, 12(10), 1969–1976.

  62. Minor, E. C., Swenson, M. M., Mattson, B. M., & Oyler, A. R. (2014). Structural characterization of dissolved organic matter: a review of current techniques for isolation and analysis. Environ. Sci Processes Impacts, 16(9), 2064–2079.

  63. Nikiforova, V. J., Kopka, J., Tolstikov, V., Fiehn, O., Hopkins, L., Hawkesford, M. J., et al. (2005). Systems rebalancing of metabolism in response to sulfur deprivation, as revealed by metabolome analysis of Arabidopsis plants. Plant Physiology, 138(1), 304–318.

  64. Obee, T. N., & Hay, S. O. (1997). Effects of moisture and temperature on the photooxidation of ethylene on Titania. Environmental Science & Technology, 31(7), 2034–2038.

  65. Oksanen, J., Guillaume-Blanchet, F., Kindt, R., Legendre, P., Minchin, P., O’Hara, R., et al. (2013). vegan: community ecology package. R package version 2.0–9, http ://CRAN.R-project.org/package=vegan

  66. Osterholz, H., Singer, G., Wemheuer, B., Daniel, R., Simon, M., Niggemann, J., & Dittmar, T. (2016). Deciphering associations between dissolved organic molecules and bacterial communities in a pelagic marine system. The ISME Journal, 10(7), 1717–1730.

  67. Paerl, H. W. (1997). Coastal eutrophication and harmful algal blooms: importance of atmospheric deposition and groundwater as “new” nitrogen and other nutrient sources. Limnology and Oceanography, 42(5part2), 1154–1165.

  68. Pan, Z., & Raftery, D. (2007). Comparing and combining NMR spectroscopy and mass spectrometry in metabolomics. Analytical and Bioanalytical Chemistry, 387(2), 525–527.

  69. Pandis, S. N., Harley, R. A., Cass, G. R., & Seinfeld, J. H. (1992). Secondary organic aerosol formation and transport. Atmospheric Environment Part A. General Topics, 26(13), 2269–2282.

  70. Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37(1), 637–669.

  71. Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421(6918), 37–42.

  72. Paytan, A., Mackey, K. R. M., Chen, Y., Lima, I. D., Doney, S. C., Mahowald, N., Labiosa, R., & Post, A. F. (2009). Toxicity of atmospheric aerosols on marine phytoplankton. Proceedings of the National Academy of Sciences of the United States of America, 106(12), 4601–4605.

  73. Peñuelas, J., & Sardans, J. (2009). Ecological metabolomics. Chemistry and Ecology, 25(4), 305–309.

  74. Peñuelas, J., Sardans, J., Rivas-Ubach, A., & Janssens, I. A. (2012). The human-induced imbalance between C, N and P in Earth’s life system. Global Change Biology, 18(1), 3–6.

  75. Peñuelas, J., & Staudt, M. (2010). BVOCs and global change. Trends in Plant Science, 15(3), 133–144.

  76. Peñuelas, J., & Terradas, J. (2014). The foliar microbiome. Trends in Plant Science, 19(5), 278–280.

  77. Pluskal, T., Castillo, S., Villar-Briones, A., & Orešič, M. (2010). MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics, 11(1), 395.

  78. R Core Team. (2013). R: a language and environment for statistical computing. Vienna.

  79. Ramanathan, V., Crutzen, P. J., Kiehl, J. T., & Rosenfeld, D. (2001). Aerosols, climate, and the hydrological cycle. Science, 294(5549), 2119–2124.

  80. Reemtsma, T. (2009). Determination of molecular formulas of natural organic matter molecules by (ultra-) high-resolution mass spectrometry: status and needs. Journal of Chromatography A, 1216(18), 3687–3701.

  81. Riedel, T., & Dittmar, T. (2014). A method detection limit for the analysis of natural organic matter via Fourier transform ion cyclotron resonance mass spectrometry. Analytical Chemistry, 86(16), 8376–8382.

  82. Rivas-Ubach, A., Barbeta, A., Sardans, J., Guenther, A., Ogaya, R., Oravec, M., Urban, O., & Peñuelas, J. (2016b). Topsoil depth substantially influences the responses to drought of the foliar metabolomes of Mediterranean forests. Perspectives in Plant Ecology, Evolution and Systematics, 21, 41–54.

  83. Rivas-Ubach, A., Gargallo-Garriga, A., Sardans, J., Oravec, M., Mateu-Castell, L., Pérez-Trujillo, M., Parella, T., Ogaya, R., Urban, O., & Peñuelas, J. (2014). Drought enhances folivory by shifting foliar metabolomes in Quercus ilex trees. New Phytologist, 202(3), 874–885.

  84. Rivas-Ubach, A., Hódar, J. A., Sardans, J., Kyle, J. E., Kim, Y.-M., Oravec, M., Urban, O., Guenther, A., & Peñuelas, J. (2016a). Are the metabolomic responses to folivory of closely related plant species linked to macroevolutionary and plant–folivore coevolutionary processes? Ecology and Evolution, 6(13), 4372–4386.

  85. Rivas-Ubach, A., Liu, Y., Bianchi, T. S., Tolić, N., Jansson, C., & Paša-Tolić, L. (2018a). Moving beyond the van Krevelen diagram: a new stoichiometric approach for compound classification in organisms. Analytical Chemistry, acs.Analchem.8b00529. doi:https://doi.org/10.1021/acs.analchem.8b00529.

  86. Rivas-Ubach, A., Pérez-Trujillo, M., Sardans, J., Gargallo-Garriga, A., Parella, T., & Peñuelas, J. (2013). Ecometabolomics: optimized NMR-based method. Methods in Ecology and Evolution, 4(5), 464–473.

  87. Rivas-Ubach, A., Poret-Peterson, A. T., Peñuelas, J., Sardans, J., Pérez-Trujillo, M., Legido-Quigley, C., et al. (2018b). Coping with iron limitation: a metabolomic study of Synechocystis sp. PCC 6803. Acta Physiologiae Plantarum, 40(2), 28.

  88. Rivas-Ubach, A., Sardans, J., Hódar, J. A., Garcia-Porta, J., Guenther, A., Oravec, M., Urban, O., & Peñuelas, J. (2016c). Similar local, but different systemic, metabolomic responses of closely related pine subspecies to folivory by caterpillars of the processionary moth. Plant Biology, 18(3), 484–494.

  89. Rivas-Ubach, A., Sardans, J., Hódar, J. A., Garcia-Porta, J., Guenther, A., Paša-Tolić, L., Oravec, M., Urban, O., & Peñuelas, J. (2017). Close and distant: contrasting the metabolism of two closely related subspecies of Scots pine under the effects of folivory and summer drought. Ecology and Evolution, 7(21), 8976–8988.

  90. Rivas-Ubach, A., Sardans, J., Peŕez-Trujillo, M., Estiarte, M., & Penũelas, J. (2012). Strong relationship between elemental stoichiometry and metabolome in plants. Proceedings of the National Academy of Sciences of the United States of America, 109(11), 4181–4186.

  91. Rochford, S. (2005). Metabolomics reviewed: a new “omics” platform technology for systems biology and implications for natural products research. Journal of Natural Products, 68, 1813–1820.

  92. Roullier-Gall, C., Boutegrabet, L., Gougeon, R. D., & Schmitt-Kopplin, P. (2014). A grape and wine chemodiversity comparison of different appellations in Burgundy: vintage vs terroir effects. Food Chemistry, 152, 100–107.

  93. Roulston, T. H., & Cane, J. H. (2000). Pollen nutritional content and digestibility for animals. Plant Systematics and Evolution, 222(1–4), 187–209.

  94. Saito, K., & Matsuda, F. (2010). Metabolomics for functional genomics, systems biology, and biotechnology. Annual Review of Plant Biology, 361, 463–489.

  95. Sardans, J., Gargallo-Garriga, A., Pérez-Trujillo, M., Parella, T. J., Seco, R., Filella, I., & Peñuelas, J. (2014). Metabolic responses of Quercus ilex seedlings to wounding analysed with nuclear magnetic resonance profiling. Plant Biology, 16(2), 395–403.

  96. Sardans, J., Peñuelas, J., & Rivas-Ubach, A. (2011). Ecological metabolomics: overview of current developments and future challenges. Chemoecology, 21(4), 191–225.

  97. Sardans, J., Rivas-Ubach, A., & Peñuelas, J. (2012). The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function: a review and perspectives. Biogeochemistry, 111(1–3), 1–39.

  98. Schmitt-Kopplin, P., Liger-Belair, G., Koch, B. P., Flerus, R., Kattner, G., Harir, M., Kanawati, B., Lucio, M., Tziotis, D., Hertkorn, N., & Gebefügi, I. (2012). Dissolved organic matter in sea spray: a transfer study from marine surface water to aerosols. Biogeosciences, 9(4), 1571–1582.

  99. Shulaev, V. (2006). Metabolomics technology and bioinformatics. Briefings in Bioinformatics, 7(2), 128–139.

  100. Seco, R., Peñuelas, J., & Filella, I. (2007). Short-chain oxygenated VOCs: emission and uptake by plants and atmospheric sources, sinks, and concentrations. Atmospheric Environment, 41(12), 2477–2499.

  101. Shulaev, V., Cortes, D., Miller, G., & Mittler, R. (2008). Metabolomics for plant stress response. Physiologia Plantarum, 132(2), 199–208.

  102. Sleighter, R. L., & Hatcher, P. G. (2007). The application of electrospray ionization coupled to ultrahigh resolution mass spectrometry for the molecular characterization of natural organic matter. Journal of mass spectrometry : JMS, 42(5), 559–574.

  103. Smith, D. F., Podgorski, D. C., Rodgers, R. P., Blakney, G. T., & Hendrickson, C. L. (2018). 21 tesla FT-ICR mass spectrometer for ultrahigh-resolution analysis of complex organic mixtures. Analytical Chemistry, 90, 2041–2047. https://doi.org/10.1021/acs.analchem.7b04159.

  104. Smith, D., & Španěl, P. (2011). Direct, rapid quantitative analyses of BVOCs using SIFT-MS and PTR-MS obviating sample collection. TrAC Trends in Analytical Chemistry, 30(7), 945–959.

  105. Solberg, Y., & Remedios, G. (1980). Chemical composition of pure and bee-collected pollen. Meldinger fra Norges landbrukshogskole, 59, 1–13.

  106. Spencer, R. G. M., Mann, P. J., Dittmar, T., Eglinton, T. I., McIntyre, C., Holmes, R. M., Zimov, N., & Stubbins, A. (2015). Detecting the signature of permafrost thaw in Arctic rivers. Geophysical Research Letters, 42(8), 2830–2835.

  107. Sterner, R., & Elser, J. (2002). Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princetion University Press.

  108. Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., Fan, T. W. M., Fiehn, O., Goodacre, R., Griffin, J. L., Hankemeier, T., Hardy, N., Harnly, J., Higashi, R., Kopka, J., Lane, A. N., Lindon, J. C., Marriott, P., Nicholls, A. W., Reily, M. D., Thaden, J. J., & Viant, M. R. (2007). Proposed minimum reporting standards for chemical analysis. Metabolomics, 3(3), 211–221.

  109. t’Kindt, R., De Veylder, L., Storme, M., Deforce, D., & Van Bocxlaer, J. (2008). LC-MS metabolic profiling of Arabidopsis thaliana plant leaves and cell cultures: optimization of pre-LC-MS procedure parameters. Journal of chromatography B, Analytical technologies in the biomedical and life sciences, 871(1), 37–43.

  110. Tfaily, M. M., Chu, R. K., Tolić, N., Roscioli, K. M., Anderton, C. R., Paša-Tolić, L., Robinson, E. W., & Hess, N. J. (2015). Advanced solvent based methods for molecular characterization of soil organic matter by high-resolution mass spectrometry. Analytical Chemistry, 87(10), 5206–5215.

  111. Tholl, D., Boland, W., Hansel, A., Loreto, F., Röse, U. S. R., & Schnitzler, J.-P. (2006). Practical approaches to plant volatile analysis. The Plant Journal, 45(4), 540–560.

  112. Thompson, H., Heimendinger, J., Gillette, C., Sedlacek, S., Haegele, A., O’Neill, C., & Wolfe, P. (2005). In vivo investigation of changes in biomarkers of oxidative stress induced by plant food rich diets. Journal of Agricultural and Food Chemistry, 53(15), 6126–6132.

  113. Tolić, N., Liu, Y., Liyu, A., Shen, Y., Tfaily, M. M., Kujawinski, E. B., Longnecker, K., Kuo, L. J., Robinson, E. W., Paša-Tolić, L., & Hess, N. J. (2017). Formularity: software for automated formula assignment of natural and other organic matter from ultrahigh-resolution mass spectra. Analytical Chemistry, 89, 12659–12665. https://doi.org/10.1021/acs.analchem.7b03318.

  114. Uzu, G., Sobanska, S., Sarret, G., Muñoz, M., & Dumat, C. (2010). Foliar lead uptake by lettuce exposed to atmospheric fallouts. Environmental Science & Technology, 44(3), 1036–1042.

  115. van den Berg, R. A., Hoefsloot, H. C., Westerhuis, J. A., Smilde, A. K., & van der Werf, M. J. (2006). Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics, 7(1), 142.

  116. van Krevelen, D. (1950). Graphical-statistical method for the study of structure and reaction processes of coal. Fuel, 29, 269–284.

  117. Vorholt, J. A. (2012). Microbial life in the phyllosphere. Nature Reviews Microbiology, 10(12), 828–840.

  118. Walsh, M. C., Brennan, L., Malthouse, J. P. G., Roche, H. M., & Gibney, M. J. (2006). Effect of acute dietary standardization on the urinary, plasma, and salivary metabolomic profiles of healthy humans. The American Journal of Clinical Nutrition, 84(3), 531–539.

  119. Walther, G. R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J. C., Fromentin, J. M., Hoegh-Guldberg, O., & Bairlein, F. (2002). Ecological responses to recent climate change. Nature, 416(6879), 389–395.

  120. Wang, R., Balkanski, Y., Bopp, L., Aumont, O., Boucher, O., Ciais, P., Gehlen, M., Peñuelas, J., Ethé, C., Hauglustaine, D., Li, B., Liu, J., Zhou, F., & Tao, S. (2015). Influence of anthropogenic aerosol deposition on the relationship between oceanic productivity and warming. Geophysical Research Letters, 42(24), 10745–10754.

  121. Warnes, G. R., Bolker, B., Bonebakker, L., Gentleman, R., Huber Andy Liaw, W., Lumley, T., et al. (2016). gplots: various R programing tools for plotting data. R package version 3.0.1, http://CRAN.R-project.org/package=gplots

  122. Wedding, J. B., Carlson, R. W., Stukel, J. J., & Bazzaz, F. A. (1975). Aerosol deposition on plant leaves. Environmental Science & Technology, 9(2), 151–153.

  123. Whipps, J. M., Hand, P., Pink, D., & Bending, G. D. (2008). Phyllosphere microbiology with special reference to diversity and plant genotype. Journal of Applied Microbiology, 105(6), 1744–1755.

  124. White, R. A., Rivas-Ubach, A., Borkum, M. I., Köberl, M., Bilbao, A., Colby, S. M., et al. (2017). The state of rhizospheric science in the era of multi-omics: a practical guide to omics technologies. Rhizosphere, 3, 212–221. https://doi.org/10.1016/J.RHISPH.2017.05.003.

  125. Wishart, D. S. (2008). Metabolomics: applications to food science and nutrition research. Trends in Food Science & Technology, 19(9), 482–493.

  126. Wozniak, A. S., Bauer, J. E., Sleighter, R. L., Dickhut, R. M., & Hatcher, P. G. (2008). Technical note: molecular characterization of aerosol-derived water soluble organic carbon using ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Atmospheric Chemistry and Physics, 8(17), 5099–5111.

  127. Xiong, T.-T., Leveque, T., Austruy, A., Goix, S., Schreck, E., Dappe, V., Sobanska, S., Foucault, Y., & Dumat, C. (2014). Foliar uptake and metal(loid) bioaccessibility in vegetables exposed to particulate matter. Environmental Geochemistry and Health, 36(5), 897–909.

  128. Zhang, A., Sun, H., Wang, P., Han, Y., & Wang, X. (2012). Modern analytical techniques in metabolomics analysis. The Analyst, 137(2), 293–300.

  129. Zhang, Q., Stanier, C. O., Canagaratna, M. R., Jayne, J. T., Worsnop, D. R., Pandis, S. N., & Jimenez, J. L. (2004). Insights into the chemistry of new particle formation and growth events in Pittsburgh based on aerosol mass spectrometry. Environmental Science & Technology, 38(18), 4797–4809.

Download references

Acknowledgements

The authors thank Rosalie Chu and Therese Clauss for their laboratory support. This research was performed using EMSL, a DOE Office of Science User Facility sponsored by the Office of Biological and Environmental Research at Pacific Northwest National Laboratory. JS and JP were supported by the European Research Council Synergy grant SyG-2013-610028 IMBALANCE-P, the Spanish Government projects CGL2013-48074-P, and the Catalan Government project SGR 2014-274. ALS was supported in part by National Science Foundation grant AGS 0952659.

Author information

Correspondence to Albert Rivas-Ubach.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 356 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rivas-Ubach, A., Liu, Y., Steiner, A.L. et al. Atmo-ecometabolomics: a novel atmospheric particle chemical characterization methodology for ecological research. Environ Monit Assess 191, 78 (2019). https://doi.org/10.1007/s10661-019-7205-x

Download citation

Keywords

  • Aerosol particles
  • Metabolomics
  • Ecosystems
  • Biomarkers
  • Mass spectrometry
  • FT-ICR