Skip to main content
Log in

Numerical assessments of recharge-dominated groundwater flow and transport in the nearshore reclamation area in western Taiwan

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study employed experimental and numerical methods to assess the behavior of conservative solute transport for a selected temporary solid waste site in a reclamation area in western Taiwan. Calibrating a site-specific numerical model, finite element model of water flow through saturated-unsaturated media (FEMWATER), relies on observations from field- and laboratory-scale hydraulic tests and spatial-temporal monitoring. The field-scale experiment used a modified hydraulic tomography survey (MHTS) to identify near surface aquifer stratifications and estimate the distribution of saturated hydraulic conductivity. The pressure plate experiments provided parameters for the van Genuchten soil characteristic model. Sensitivity analyses were then conducted based on varied recharge rates and dispersivities applied to the calibrated model. Observations of groundwater levels and salinity in the wells indicated that the regional groundwater flow was from southeast to northwest. In addition, a shallow freshwater layer was noted in the study area. The tidal-induced amplitudes for water level fluctuation in the wells ranged from 2 to 20 cm, depending on their distance from the seawater body. MHTS showed clear stratification, similar to that of well loggings at the storage site. The hydraulic conductivity at the test site ranged from 8 to 10 m/day, which is close to that obtained from the laboratory falling head test. The results of particle-tracking modeling showed that the critical recharge rate for the site needed to enhance plume traveling is 1000 mm/year. The increase in dispersivity values induced a decrease in plume travel time of up to 1000 days from the site to the coastal line. A special case for pulse releasing solute at the site shows that the key factor in controlling plume migration is the recharge rate. This is due to the low natural head gradient in the reclamation area. The results therefore suggest that a land drainage system near the site can play an important role in contaminant transport in the reclamation area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Alexander, M., Berg, S. J., & Illman, W. A. (2011). Field study of hydrogeologic characterization methods in a heterogeneous aquifer. Ground Water, 49(3), 365–382.

    CAS  Google Scholar 

  • Amato, D. W., Bishop, J. M., Glenn, C. R., Dulai, H., & Smith, C. M. (2016). Impact of submarine groundwater discharge on marine water quality and reef biota of Maui. PLoS One, 11(11), e0165825.

    Google Scholar 

  • Anwar, N., Robinson, C., & Barry, D. A. (2014). Influence of tides and waves on the fate of nutrients in a nearshore aquifer: numerical simulations. Advances in Water Resources, 73, 203–213.

    CAS  Google Scholar 

  • Ataie-Ashtiani, B., Volker, R. E., & Lockington, D. A. (1999). Tidal effects on sea water intrusion in unconfined aquifers. Journal of Hydrology, 216(1–2), 17–31.

    Google Scholar 

  • Bakhtyar, R., Brovelli, A., Barry, D. A., Robinson, C., & Li, L. (2013). Transport of variable-density solute plumes in beach aquifers in response to oceanic forcing. Advances in Water Resources, 53, 208–224.

    CAS  Google Scholar 

  • Berg, S. J., & Illman, W. A. (2015). Comparison of hydraulic tomography with traditional methods at a highly heterogeneous site. Groundwater, 53(1), 71–89.

    CAS  Google Scholar 

  • Berg, S. J., Illman, W. A., & Mok, C. M. W. (2015). Joint estimation of hydraulic and poroelastic parameters from a pumping test. Groundwater, 53(5), 759–770.

    CAS  Google Scholar 

  • Bohling, G. C., Butler, J. J., Zhan, X., & Knoll, M. D. (2007). A field assessment of the value of steady shape hydraulic tomography for characterization of aquifer heterogeneities. Water Resource Research, 43(5), W05430. https://doi.org/10.1029/2006WR004932.

  • Boufadel, M. C., Sharifi, Y., Van Aken, B., Wrenn, B. A., & Lee, K. (2010). Nutrient and oxygen concentrations within the sediments of an Alaskan beach polluted with the Exxon Valdez oil spill. Environmental Science & Technology, 44(19), 7418–7424.

    CAS  Google Scholar 

  • Boufadel, M. C., Xia, Y., & Li, H. (2011). Modeling solute transport and transient seepage in a laboratory beach under tidal influence. Environmental Modelling & Software, 26(7), 899–912.

    Google Scholar 

  • Brovelli, A., Mao, X., & Barry, D. A. (2007). Numerical modeling of tidal influence on density dependent contaminant transport. Water Resource Research, 43(10), W10426. https://doi.org/10.1029/2006WR005173.

  • Burgherr, P. (2007). In-depth analysis of accidental oil spills from tankers in the context of global spill trends from all sources. Journal of Hazardous Materials, 140(1–2), 245–256.

    CAS  Google Scholar 

  • Butler, J. J. (1997) The design, performance, and analysis of slug tests. Boca Raton: CRC Press, p. 262.

  • Butler, J. J., & Liu, W. (1993). Pumping tests in nonuniform aquifers: the radially asymmetric case. Water Resources Research, 29(2), 259–269.

    Google Scholar 

  • Cardiff, M., Barrash, W., & Kitanidis, P. K. (2013). Hydraulic conductivity imaging from 3-D transient hydraulic tomography at several pumping/observation densities. Water Resources Research, 49, 7311–7326. https://doi.org/10.1002/wrcr.20519.

    Google Scholar 

  • Chang, S. W., & Clement, T. P. (2012). Experimental and numerical investigation of saltwater intrusion dynamics in flux controlled groundwater systems. Water Resource Research, 48(9), W09527. https://doi.org/10.1029/2012WR012134.

  • Chang, S. W., & Clement, T. P. (2013). Laboratory and numerical investigation of transport processes occurring above and within a saltwater wedge. Journal of Contaminant Hydrology, 147, 14–24.

    CAS  Google Scholar 

  • Chen, H., & Pinder, G. F. (2011). Investigation of groundwater contaminant discharge into tidally influenced surface-water bodies: experimental results. Transport in Porous Media, 89(3), 307–321.

    CAS  Google Scholar 

  • Gallage, C., Kodikara, J., & Uchimura, T. (2013). Laboratory measurement of hydraulic conductivity functions of two unsaturated sandy soils during drying and wetting processes. Soils and Foundations, 53(3), 417–430.

    Google Scholar 

  • Garbossa, L. H. P., Souza, R. V., Campos, C. J. A., Vanz, A., Vianna, L. F. N., & Rupp, G. S. (2016). Thermotolerant coliform loadings to coastal areas of Santa Catarina (Brazil) evidence the effect of growing urbanisation and insufficient provision of sewerage infrastructure. Environmental Monitoring and Assessment, 189(1), 27.

    Google Scholar 

  • Gelhar, L. W., Welty, C., & Rehfeldt, K. R. (1992). A critical review of data on field-scale dispersion in aquifers. Water Resources Research, 28(7), 1955–1974.

    CAS  Google Scholar 

  • Guo, H., & Jiao, J. J. (2007). Impact of coastal land reclamation on ground water level and the sea water interface. Ground Water, 45(3), 362–367.

    CAS  Google Scholar 

  • Hao, Y., Yeh, T.-C. J., Xiang, J., Illman, W. A., Ando, K., Hsu, K.-C., & Lee, C.-H. (2008). Hydraulic tomography for detecting fracture zone connectivity. Ground Water, 46(2), 183–192.

    CAS  Google Scholar 

  • Illman, W. A., Liu, X., & Craig, A. (2007). Steady-state hydraulic tomography in a laboratory aquifer with deterministic heterogeneity: multi-method and multiscale validation of hydraulic conductivity tomograms. Journal of Hydrology, 341(3–4), 222–234.

    Google Scholar 

  • Illman, W. A., Liu, X., Takeuchi, S., Yeh, T. C. J., Ando, K., & Saegusa, H. (2009). Hydraulic tomography in fractured granite: Mizunami underground research site, Japan. Water Resource Research, 45(1), W01406. https://doi.org/10.1029/2007WR006715.

  • Levine, B. M., White, J. R., & DeLaune, R. D. (2017). Impacts of the long-term presence of buried crude oil on salt marsh soil denitrification in Barataria Bay, Louisiana. Ecological Engineering, 99, 454–461.

    Google Scholar 

  • Li, H., & Boufadel, M. C. (2010). Long-term persistence of oil from the Exxon Valdez spill in two-layer beaches. Nature Geoscience, 3(2), 96–99.

    CAS  Google Scholar 

  • Li, H., & Boufadel, M. C. (2011). A tracer study in an Alaskan gravel beach and its implications on the persistence of the Exxon Valdez oil. Marine Pollution Bulletin, 62(6), 1261–1269.

    CAS  Google Scholar 

  • Li, L., Barry, D. A., Stagnitti, F., & Parlange, J. Y. (1999). Submarine groundwater discharge and associated chemical input to a coastal sea. Water Resources Research, 35(11), 3253–3259.

    CAS  Google Scholar 

  • Li, W., Englert, A., Cirpka, O. A., & Vereecken, H. (2008). Three-dimensional geostatistical inversion of flowmeter and pumping test data. Ground Water, 46(2), 193–201.

    CAS  Google Scholar 

  • Li, W.-C., Ni, C.-F., Tsai, C.-H., & Wei, Y.-M. (2016). Effects of hydrogeological properties on sea-derived benzene transport in unconfined coastal aquifers. Environmental Monitoring and Assessment, 188(5), 1–18.

    Google Scholar 

  • Lin, H. C. J., Richards, D. R., Yeh, G. T., Cheng, J. R., & Cheng, H. P. (1997). FEMWATER: A Three-dimensional finite element computer model for simulating density-dependent flow and transport in variably saturated media (No. WES/TR/CHL-97-12). Vicksburg: Army engineer waterways experiment station vicksburg ms coastal hydraulics lab.

  • Liu, Y., Mao, X., Chen, J., & Barry, D. A. (2014). Influence of a coarse interlayer on seawater intrusion and contaminant migration in coastal aquifers. Hydrological Processes, 28(20), 5162–5175.

    Google Scholar 

  • Liu, Y., Shao, J., & Cui, Y. (2015). A double-porosity slug test model for a sloping fracture zone. Environmental Earth Sciences, 74(7), 5875–5884.

    Google Scholar 

  • Mao, X., Enot, P., Barry, D. A., Li, L., Binley, A., & Jeng, D. S. (2006). Tidal influence on behaviour of a coastal aquifer adjacent to a low-relief estuary. Journal of Hydrology, 327(1–2), 110–127.

    Google Scholar 

  • Neuman, S. P. (1988). In E. Custodio, A. Gurgui, & J. P. L. Ferreira (Eds.), Groundwater flow and quality modelling (pp. 331–362). Dordrecht: Springer Netherlands.

    Google Scholar 

  • Ni, C. F., & Li, S. G. (2005). Simple closed form formulas for predicting groundwater flow model uncertainty in complex, heterogeneous trending media. Water Resources Research, 41(11), W11503.

    Google Scholar 

  • Ni, C. F., & Li, S. G. (2006). Modeling groundwater velocity uncertainty in complex composite media. Advances in Water Resources, 29, 1866–1875.

    Google Scholar 

  • Ni, C. F., & Yeh, T. C. J. (2008). Stochastic inversion of pneumatic cross-hole tests and barometric pressure fluctuations in heterogeneous unsaturated formations. Advances in Water Resources, 31(12), 1708–1718.

    Google Scholar 

  • Ni, C. F., Yeh, T. C. J., & Chen, J. S. (2009). Cost-effective hydraulic tomography surveys for predicting flow and transport in heterogeneous aquifers. Environmental Science & Technology, 43(10), 3720–3727.

    CAS  Google Scholar 

  • Ni, C. F., Li, S. G., Liu, C. J., & Hsu, S. M. (2010). Efficient conceptual framework to quantify flow uncertainty in large-scale, highly nonstationary groundwater systems. Journal of Hydrology, 384, 297–307.

    Google Scholar 

  • Ni, C. F., Huang, Y. J., Dong, J. J., & Yeh, T. C. (2015). Sequential hydraulic tests for transient and highly permeable unconfined aquifer systems-model development and field-scale implementation. Hydrology and Earth System Sciences Discussions, 12, 12567–12613.

    Google Scholar 

  • Nick, H. M., Raoof, A., Centler, F., Thullner, M., & Regnier, P. (2013). Reactive dispersive contaminant transport in coastal aquifers: numerical simulation of a reactive Henry problem. Journal of Contaminant Hydrology, 145, 90–104.

    CAS  Google Scholar 

  • Peterson, C. H., Rice, S. D., Short, J. W., Esler, D., Bodkin, J. L., Ballachey, B. E., & Irons, D. B. (2003). Long-term ecosystem response to the Exxon Valdez oil spill. Science, 302(5653), 2082–2086.

    CAS  Google Scholar 

  • Pool, M., Post, V. E. A., & Simmons, C. T. (2015). Effects of tidal fluctuations and spatial heterogeneity on mixing and spreading in spatially heterogeneous coastal aquifers. Water Resources Research, 51(3), 1570–1585.

    Google Scholar 

  • Robinson, M., Gallagher, D., & Reay, W. (1998). Field observations of tidal and seasonal variations in ground water discharge to tidal estuarine surface water. Ground Water Monitoring & Remediation, 18(1), 83–92.

    Google Scholar 

  • Robinson, C., Li, L., & Barry, D. A. (2007). Effect of tidal forcing on a subterranean estuary. Advances in Water Resources, 30(4), 851–865.

    Google Scholar 

  • Robinson, C., Brovelli, A., Barry, D. A., & Li, L. (2009). Tidal influence on BTEX biodegradation in sandy coastal aquifers. Advances in Water Resources, 32(1), 16–28.

    Google Scholar 

  • Sbarbati, C., Colombani, N., Mastrocicco, M., Aravena, R., & Petitta, M. (2015). Performance of different assessment methods to evaluate contaminant sources and fate in a coastal aquifer. Environmental Science and Pollution Research, 22(20), 15536–15548.

    CAS  Google Scholar 

  • Shen, C., Zhang, C., Jin, G., Kong, J., & Li, L. (2016). Effects of unstable flow on solute transport in the marsh soil and exchange with coastal water. Geophysical Research Letters, 43(23), 12,091–012,101.

    Google Scholar 

  • Simmons, C. T., Fenstemaker, T. R., & Sharp, J. M., Jr. (2001). Variable-density groundwater flow and solute transport in heterogeneous porous media: approaches, resolutions and future challenges. Journal of Contaminant Hydrology, 52(1–4), 245–275.

    CAS  Google Scholar 

  • Straface, S., Yeh, T. C. J., Zhu, J., Troisi, S., & Lee, C. H. (2007). Sequential aquifer tests at a well field, Montalto Uffugo Scalo, Italy. Water Resource Research, 43(7), W07432. https://doi.org/10.1029/2006WR005287.

  • Trefry, M. G. (1999). Periodic forcing in composite aquifers. Advances in Water Resources, 22(6), 645–656.

    Google Scholar 

  • Uchiyama, Y., Nadaoka, K., Rölke, P., Adachi, K., & Yagi, H. (2000). Submarine groundwater discharge into the sea and associated nutrient transport in a Sandy Beach. Water Resources Research, 36(6), 1467–1479.

    CAS  Google Scholar 

  • Ullman, W. J., Chang, B., Miller, D. C., & Madsen, J. A. (2003). Groundwater mixing, nutrient diagenesis, and discharges across a sandy beachface, Cape Henlopen, Delaware (USA). Estuarine, Coastal and Shelf Science, 57(3), 539–552.

    CAS  Google Scholar 

  • Van Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5), 892–898.

    Google Scholar 

  • Van Genuchten, M. Th., Leij, F. J., & Yates, S. R. (1991). The RETC code for quantying the hydraulic functions of unsaturated soils; EPA/600/2-91/065. In R. S. Kerr (Ed.), Environmental Research Laboratory. ADA: U.S. Environmental Protection Agency.

  • Volker, R. E., Zhang, Q., & Lockington, D. A. (2002). Numerical modelling of contaminant transport in coastal aquifers. Mathematics and Computers in Simulation, 59(1–3), 35–44.

    Google Scholar 

  • Weiskel, P. K., & Howes, B. L. (1992). Differential transport of sewage-derived nitrogen and phosphorus through a coastal watershed. Environmental Science & Technology, 26(2), 352–360.

    CAS  Google Scholar 

  • Xia, Y., Li, H., Boufadel, M. C., & Sharifi, Y. (2010). Hydrodynamic factors affecting the persistence of the Exxon Valdez oil in a shallow bedrock beach. Water Resource Research, 46(10), W10528. https://doi.org/10.1029/2010WR009179.

  • Yeh, T. C. J., & Liu, S. (2000). Hydraulic tomography: development of a new aquifer test method. Water Resources Research, 36(8), 2095–2105.

    Google Scholar 

  • Zha, Y., Yeh, T. J., Illman, W. A., Tanaka, T., Bruines, P., Onoe, H., Saegusa, H., Mao, D., Takeuchi, S., & Wen, J. (2016). An application of hydraulic tomography to a large-scale fractured granite site, Mizunami, Japan. Groundwater, 54, 793–804. https://doi.org/10.1111/gwat.12421.

    CAS  Google Scholar 

  • Zhang, Q., Volker, R. E., & Lockington, D. A. (2001). Influence of seaward boundary condition on contaminant transport in unconfined coastal aquifers. Journal of Contaminant Hydrology, 49(3–4), 201–215.

    CAS  Google Scholar 

  • Zhang, Q., Volker, R. E., & Lockington, D. A. (2002). Experimental investigation of contaminant transport in coastal groundwater. Advances in Environmental Research, 6(3), 229–237.

    CAS  Google Scholar 

  • Zhu, J., & Yeh, T.-C. J. (2005). Characterization of aquifer heterogeneity using transient hydraulic tomography. Water Resource Research, 41(7), W07028. https://doi.org/10.1029/2004WR003790.

Download references

Funding

This research was supported by Dragon Steel, under grant 14C1M0014, and partially supported by Soil and Groundwater Pollution Remediation Fund in 2017 and 2018, by the Institute of Nuclear Energy Research under grant NL1030099, and by Water Resources Planning Institute under grant 107705.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuen-Fa Ni.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, CF., Li, WC., Hsu, S.M. et al. Numerical assessments of recharge-dominated groundwater flow and transport in the nearshore reclamation area in western Taiwan. Environ Monit Assess 191, 83 (2019). https://doi.org/10.1007/s10661-019-7199-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7199-4

Keywords

Navigation